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3
Myths about Longitudinél Research*

David Rogosa

This chapter is concerned with methods for the analysis of longitudinal data.
Longitudinal research in the behavioral and social sciences has been dominated,
for the past 50 years or more, by a collection of damaging myths and misun-
derstandings. The development and application of useful methods for the
analysis of longitudinal data have been impeded by these myths. In debunking
these myths the chapter secks to convey “right thinking” about longitudinal
research; in particular, productive statistical analyses require the identification of
sensible research questions, appropriate statistical models, and unambiguous
quantities to be estimated. The heroes of this chapter are statistical models for
collections of individual growth (learning) curves. The myths to be discussed
are:

1. Two observations a longitudinal study make.
2. The difference score is intrinsically unreliable and unfair.
3. You can determine from the correlation matrix for the longitudinal data
whether or not you are measuring the same thing over time.
4. The correlation between change and initial status is
(a) negative
(b) zero
(¢) positive
(d) all of the above

*This chapter is a revised version of a coloquium of the same title presented at National Institutes
of Health, Stanford University, University of California-Berkeley, Center for Advanced Studies in
the Behavioral Sciences, and Vanderbile University. Preparation of this chapter has been supported
by 2 Seed Grant from the Spencer Foundation. I would like to thank Ghassan Ghandour, John B.
Willett, and Gary Williamson for computational assistance in preparing the examples.
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172 Methodological Issues in Aging Research
5. You can't avoid regression toward the mean.
6. Residual change cures what ails the difference score.

~

- Analyses of covariance matrices inform about change.
. Stability coefficients estimate
(a) the consistency over time of an individual
(b) the consistency over time of an average individual
(c) the consistency over time of individual differences
(d) none of the above
(¢) some of the above :
9. Casual analyses support causal inferences about reciprocal effects.

oo}

The most prevalent type of longitudinal data in the behavioral and social
sciences is longitudinal panel data. Longitudinal panel data consist of obser-
vations on many individual cases (persons) on relatively few (two or more) oc-
casions (waves) of observation. An observation on a variable X at time ¢; for in-
dividual p is written as X, wherei=1,... 7T and P=1,...,n (For statistical

. methods based on individual growth curves, observations need not be made at

the same times for all individuals. But as this is necessary for the standard
methods that predominate in the behavioral and social sciences, in my examples
all individuals have the same values of %, which means everyone is measured at
the same times.)

The X, ate presumed to be composed of a true score &(*,) and an error of
Measurement g, according to the classical test theory model: Xy =&(1) + €
Many of the examples are in terms of the &(%;) and thus assume good measure-
ment. The justification is that petfect measurement serves as a baseline for the
examination of analysis methods. A statistical procedure that works pootly even
with perfect measurement js clearly not attractive. Estimation of individual
growth curves is not jeopardized by the presence of measurement error within
reasonable bounds, but measurement errors cause more severe problems for
methods based on the covariance matrix of the X; (e.g., regression-based
procedures).

The individual growth curves are functions of true score over time, & (7).
Research questions about growth, development, learning, and the like center on
the systematic change in an attribute over time, and thus the individual growth
curves are the natural foundation for modeling the longitudinal data. The
growth curve models are kept relatively simple because the basic ideas and ap-
proaches remain valid for more complex growth models. The simplest and most
widely used example will be straight-line growth, which specifies a constant rate
of change denoted by 6. A second growth curve example is exponential growth
to an asymptote. |

The straight-line growth curve for individual p is written:
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- &) =§,(0) + 0. C(5.1)

A collection of straight-line growth curves is shown in Figure 5-1; the individual
growth curves have different values of rate of change 6, and level &(0). The
value of the growth curve at a discrete time ; yields the &), and the X, are
formed by the addition of measurement error. (In particular, for the many exam-
ples based on the collection of growth curves in Figure 5-1, the numerical values
are obtained for a population of growth curves illustrated by the 15 growth
curves in Figure 5-1, not for a sample or population of size 15.)

In some variables, such as attitudinal measures, the volatility over time may
be far more important in the data than a systematic trend. The myth about
stability over occasions will address this, using measures of consistency over time
based on growth curve models.

The discussion of each myth is based on simple numerical examples, using
cither the &,#) or Xy Although these cxamples are constructed to illustrate a
particular message, cach message is supported by technical results from my
papers on statistical methods for the analysis of longitudinal data. This chapter is
intended to serve as a less formal, and more accessible, exposition of the key
ideas in those publications. In fact, the exposition deliberately avoids the presen-
tation of mathematical results; citations throughout the text and the “reference
notes” section at the end of each myth locate the relevant technical presen-

—
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FIGURE 5-1. An illustrative collection of 15 straight-line growth curves in & (cf. Equa-
tion 5.1).
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Rogosa, D. R., & Willett, J. B. (1983). Demonstrating the reliability of the difference
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Rogosa, D. R., & Willett, J. B. (1985a). Satisfying a simplex structure is simpler than it
should be. Journal of Educational Statistics, 10, 99-107.

Rogosa, D. R., & Willett, J. B. (1985b). Understanding correlates of change by modeling
individual differences in growth. Psychomesrika, 50, 203228,

MYTH 1: TWO OBSERVATIONS A LONGITUDINAL
STUDY MAKE

Strictly speaking, two repeated observations do constitute a longitudinal study.
A more exact statement of the myth would be that two observations are pre-

sumed to be adequate for studying change. This misunderstanding is inspired by |

the dominance of pre-test, post-test longitudinal designs in the methodological
and empirical work of the behavioral and social sciences. Two observations do
provide some information about change over time, but this design has many
critical limitations. In Rogosa et al. (1982, p. 744), I expressed this by the motto:
“Two waves of data are better than one, but maybe not much better.” Lon-
gitudinal designs with only two observations may address some research ques-

tions marginally well—but many others rather poorly.

Two Observations Permit Estimation of the Amount of Change but
Not of the Individual Growth Curve

Consider two observations on true score & for a single individual plotted against
time; that is, time is on the horizontal axis and true score is on the vertical axis.
With just two observations over time, what can be learned about an individual?
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Although it is statistically shaky, 2 growth curve can be fit to two points in time.
A straight line passing through the two points is the most complex functional
form that can be fit. Even then, the data contain no information on the adequacy
of the straight-line functional form for growth or on the amount of scatter in
the data. Furthermore, two points in time provide no basis for distinguishing
among alternative growth curves; for example, a variety of exponential or logis-
tic growth curves could pass perfectly through the two points. Even if the form
of the growth curve were known (e.g., exponential), two observations are not
sufficient to provide any estimates of the parameters of the growth curve.
Although the investigation of the functional form of growth will often require
far more than two points in time, two observations do allow estimation of the
amount of change between #, and #,. These remarks are obvious, and this discus-
sion would be of little import if it were not for the preponderance of two-wave
panel designs in methodological discussions and empirical studies of change
and development.

The formulation of Coleman (1968) founded an alternative tradition for the
study of change, mainly among sociologists. In this formulation the parameters
of the growth function do not differ over individuals. This tradition assumes
that “the process is identical for all persons” (p. 437) and allows the estimation
of complex growth curves (e.g., exponential, logistic) where “the data may be
two waves of a panel with two observations on many individuals or many obser-
vations on the same individual” (p. 432). Additional examples of this tradition
are Nielson and Rosenfeld (1981), Salemi and Tauchen (1982), and Tuma and
Hannan (1984, chap.11). In order to estimate complex growth curves from only
two observations on each individual, observations from many individuals must
be “combined” into a single growth curve. Individual differences in growth pre-
clude the validity of this approach unless some exogenous individual characteris-
tics can be used to completely account for the individual differences. That is,
violations of the assumption that the parameters of the growth function are the
same for all individuals can be extremely consequential.

The Amount of Change Will Often Be Deceptive

The amount of change over a specified time interval is a natural quantity to es-
timate from longitudinal data. Define A,(%, ¢ + ¢) = & (¢ + ¢) — §2) as the
amount of true change for individual p over the time interval starting at time ¢
and extending ¢ units. For straight-line growth, A, (%, # + ¢) = 8. The amount of
change between times # and time # + ¢ depends on # for growth curves having a
nonconstant rate of change (i.c., growth curves other than straight-line) and will
often be a complex function of # and ¢. Thus, in a two-wave study, choices of
time 1-time 2 measurements are likely to be extremely consequential. In par-
ticular, the amount of change may be especially deceptive in comparing growth
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among individuals because observations over alternative time intervals may yield
contradictory information. Below is an example showing that the amount of
change is no guide to individual differences in growth.

Consider a collection of six individual growth curves, for individuals labeled
A,B,C,D,E,F.Each growth curve has the form of exponential growth toward a
ceiling or asymptote governed by the equation

&p(ti) = }"p - (}"p - ép(o))"_tﬁ. (5.2)

Table 5-1 gives the parameter values for these six growth curves. The individuals
differ on the asymptote A, on the starting level £(0), and on the curvature
parameter Y. These growth curves also produce individual differences in the
amount of change. Table 5-2 presents the amount of change A (2, #, + 1) for in-
dividuals A, B, C, D, E, F for initial observation at time #; and final observation
atz;+ 1, with ;= 0, 4, 10. For #, = 0 the individual rankingon A is A, B,C, D, E,
F (A improves the most in the interval [0, 1], B the next most, C the next, and so
on), with the largest A nearly double the smallest. If instead #1 = 10, the ranking
for the amount of change is reversed, with the largest A nearly three times the
smallest. So two different studies might obtain exactly the opposite results for
individual differences in change depending on the choice of initial time of
measurement. Furthermore, for #, = 4, the A values are nearly equal (smaller in-
dividual differences in change) with yet a different ranking of individuals.

The reversals of individual standing on the amount of change may be most
consequential for studies of the correlation of change with an exogenous back-
ground variable. Such a correlation might be found to be big, positive for a study
using #; = 0; big, negative for #, = 10; and about zero for t;=4, even if all three
studies had perfect measurement.

The example above illustrates the danger of characterizing the growth of in-
dividuals by the amount of change over a specific time interval. Even with per-
fect measurement, the pre-post longitudinal design provides meager informa-

TABLE 5-1. Parameter Values for the Six
Exponential Growth Curves

Individual () A Y
A 50 80 25
B 40 70 .22
C 30 60 19
D 20 50 .16
E 10 40 13
Y 0 30 - .10
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TABLE 5-2. Amount of True Change A(y, t; + 1)
for Exponential Growth Example :

Individual tI= 0 tI=4 tI= 10
A 6.64 244 .54
B 6.32 2.62 .70
C 5.88. 2.75 88
D 5.37 2.81 1.07
E 4.63 2.75 1.26
F 3.81 2.55 1.40

tion. Two-wave designs permit at best the study of individual differences in A
or, equivalently, in some sort of average rate of change. Consequently, designs
with only two observations are usually inadequate for the study of individual
growth and individual differences in growth.

Reference notes

The limitations of two-wave designs for the measurement of change are ex-
amined in Rogosa et al. (1982) and Rogosa and Willett (1985b). Mathematical
results corresponding to the example in Table 5-1 are given in Section 1.4 of
Rogosa and Willett (1985b). The advantages of multiwave data for the estima-
tion of individual change are enumerated in Rogosa et al. (1982, pp- 741-
743).

MYTH 2: THE DIFFERENCE SCORE IS INTRINSICALLY
UNRELIABLE AND UNFAIR

An impressive amount of psychometric literature over the last 50 years has
sought to demonstrate deficiencies in the difference score. With only two obser-
vations, the difference score, D =X, — X, is a natural estimate of the amount of
true change, A(#,, #,), regardless of the form of the growth curve. Fora straight-
line growth curve model the difference score estimates the (constant) rate of
change times the time interval. In general, the difference score divided by the
time elapsed estimates an average rate of change over the time interval.

Unreliability of the Difference Score

The traditional tabulation of the reliability of the difference score is shown by
Table 5.3, which also appears in Linn and Slinde (1977) and in various forms in

=
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TABLE 5-3. Traditional Tabulation of
the Reliability of the Difference Score

P(X)

le XZ 7 .8 .9
.5 40 .60 .80
.6 25 .50 75
7 .00 .33 .67
8 — .00 .50
9 — — .00

many other publications. The pre-test-, post-test correlation of observed scores
and the reliability of observed scores look reasonable, and for most combinations
the difference score has little reliability. This type of numerical demonstration
supports the assertions by Lotrd that “differences between scores tend to be
much more unreliable than the scores themselves” (1956, p. 429) and that “the
difference between two fallible measures is frequently much more fallible than
cither” (1963, p. 32). 4

The untold story is the lirhited and constrained nature of this table. The table
employs the constraints of equal reliabilities p(X,) = P(X;) = p(X) and equal
variances 0% = %, = 0% for the fallible observed scores, X, and X,,. Also, these
constraints imply equal true-score variances at times 1 and 2 and also a negative
value of Pz, A, the correlation between true change and true initial status,

The most prominent feature of Table 5-3 is that the time 1-time 2 true-score
correlation pg ¢ is very large in almost all regions; this can be seen from the stan-
dard disattenuation formula Peie, = Px,x,/P(X). In particular, Pz, is 1.0 along
the diagonal of zero reliability for the difference score. What are the im-
Plications for individual growth of the table’s restriction to this small portion of
the parameter space? A collection of growth curves that exhibit high time 1-
time 2 correlation and cqual variances at times 1 and 2 will have all the growth
curves neatly parallel. Thus all individuals are growing at nearly the same rate
which translates into almost no individual differences in true change. (Figure 1
of Rogosa et al., 1982, shows such a collection of straight-line growth curves
with time 1-time 2 correlation about 95.) If there are no individual differences
in true change, the difference score cannot be expected to detect them. So after
building into the traditional tabulations the constraints that there be almost no
individual differences in growth, the low reliability of the difference score
should be no surprise.

If, instead, 2 moderate correlation, pe & = -4, is used in conjunction with the

other constraints in Table 5-3, the difference score appears much stronger. The
qQuantity p (D) / p (X) has values. 83, .88, and .94 for the P(X) values .7, .8, and
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9, respectively. Thus, even with the other constraints the difference score is
nearly as reliable as the measure X. A moderate time 1-time 2 correlation cor-
tesponds to numerous crossings of the growth curves and considerable in-
dividual differences in change. (Rogosa et al. 1982, Figure 2, shows a time 1-
time 2 correlation of about .5 for a collection of straight-line growth curves.)

Table 5-4 presents a slightly different tabulation of the reliability of the dif-
ference score in terms of the time 1-time 2 true-score correlation and the
reliability of X. The reliability of X, is set to .9, and the reliability of X, is varied.
(Setting p(X;) > p(X;) maintains approximately equal error variances at times 1
and 2.) The correlation between true change and initial status is set to zero,
which is a useful benchmark case, also known as the Overlap Hypothesis. For
these parameter values, the difference score does extremely well; for a moderate
true-score correlation the difference score is more reliable than the average
reliability of the measures. Even for a high correlation, the difference score does
rather well compared to reliability of X, and in absolute terms, P(D) is also sub-
stantial. In sum, when there are individual differences in change, the difference
score has decent reliability. : :

The message that debunks this myth is that the difference score js reliable
when individual differences in true change exist. After all, the reliability of the
difference score is the variance of true change divided by the sum of the variance
of true change and the variance of the difference of the errors. For parameter
configurations that require all individuals to grow at about the same rate, the
low reliability of the difference score propetly reveals that you can’t detect in-
dividual differences that ain’t there.

Unfairness of the Difference S;:orc

The belief that the difference score is somehow not a “fair” measure of change is
reflected in the statements that difference scores “give an advanta_gc to persons
with certain values of the pretest score” (Linn & Slinde, 1977, p. 125) and “the
correlation between change and initial status made it inappropriate to use change

TABLE 5-4. Values of P(D)/H (X)
when pg A =0 and pP(X3) =.90

P(Xy)

Pz & .6 7 8
4 1.06 1.03 1.00
.6 .86 .88 90
8 .53 .60 .67
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[difference] scores to evaluate individuals with different initial scores” (O’Con-
nor, 1972, p. 78). The difference score is an unbiased estimate of truc change.
How can an unbiased estimate be inequitable? That is a question to which I have
no answer. The confusion is bound up with misunderstandings about the cor-
relation between change and initial status and with misguided motivations for
the use of residual change measures. These will be untangled in subsequent
myths.

Reference notes

A presentation of the reliability of the difference score in terms of individual dif-
ferences in growth is given in Rogosa et al. (1982, pp. 731-734). The nontechni-
cal exposition of Rogosa and Willett (1983b) provides numerical examples
demonstrating the reliability of the difference score when individual differences
in growth exist. Statistical properties of D, for estimating A, are described in
Rogosa et al. (1982); in particular, the construction and properties of “improved
difference score” (Kelley-type, Lord-McNemar, and empirical Bayes) estimates,
which use information from all # individuals in the estimation of A, are ex-
amined in detail in Rogosa et al. (1982, Pp- 735-738, 742-743, and the
Appendix). '

MYTH 3: YOU CAN DETERMINE FROM THE CORRELATION
MATRIX FOR THE LONGITUDINAL DATA WHETHER OR
NOT YOU ARE MEASURING THE SAME THING OVER TIME

A typical statement of the third myth is that with low correlations over time “jt
is questionable whether one is measuring the same thing on both occasions, and
consequently the notion of change becomes questionable” (Bond, 1979). A very
serious question in studies of development (whether it be in early child develop-
ment or later in the aging process) is whether measures “change out from under
you” in the sense of measuring something different on different occasions of ob-
servation. The important issue is whether asking about quantitative change in
the measures over time is meaningful. The assumption that the psychological
variable or dimension being studied retains the same meaning over the occasions
of observation is a logical prerequisite for the measurement of quantitative
change. This view is reflected by Lord (1958), who discussed an instructional set-
ting in which “the test no longer measures the same thing when given after in-
struction as it did before instruction. If this is asserted, then the pretest and
posttest are measuring different dimensions and no amount of statistical
manipulation will produce a measure of gain or of growth” (p. 440). Similarly,
Bereiter (1963) wrote: “Once it is allowed that the pretest and posttest measure

s
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different things it becomes embarrassing to talk about change. There seems no
longer any way to answer the question, change on what?” (p. 11). (See also Cron-
bach & Furby, 1970, p. 76; Linn & Slinde, 1977, p- 24; Lord, 1963, p. 21).

In many situations these concerns may preclude the study of quantitative
change. Nonetheless, valid and answerable questions about change should be
pursued. Thus, the myth addresses a very important consideration; the misun-
derstanding is in thinking that this issue can be resolved by the between-wave
correlation matrix. The truth is that much more and very different information
may be required to resolve this issue.

Consider the picture of a collection of straight-line growth curves in Figure
5-1. Table 5-5 presents the corresponding correlation matrix, with entries of the
correlation between §;and &; for #;,#, =0, 1, . . . , 8. Now, between times 5 and 7
the correlation between true scores is very big, .94; even with some measure-
ment error there would be a healthy correlation. Should we “conclude” that the
same thing is being measured over this time interval? If, instead, the interval is
from time 1 to 5, the correlation is .385. Should this correlation be taken to indi-
cate that different things are being measured at times 1 and 5? Furthermore, for
the interval with end points at times 1 and 7 (the concatenation of the two time
intervals above) the correlation is .056. Are unrelated quantities being measured
at times 1 and 7? According to the myth, the above three questions receive af-
firmative answers. Furthermore, the correlation between times 0 and 8 is —.24;
should this correlation be taken to indicate that opposire attributes are being
measured at times 0 and 8? :

The cortelations in Table 5-5 correspond to the collection of straight-line
growth curves in Figure 5-1. As each individual has a constant rate of change on
the attribute &, it is hard to imagine a configuration of individual growth that
shows less discontinuity. Clearly, a way of thinking that indicates that different
things are measured by ; and &, has deep flaws. In the same vein, large cor-
relations cannot “prove” that the same thing is being measured at both ends of

TABLE 5-5. True-Score Correlation Matrix for Straight-line Growth Example

0 1 2 3 4 5 6 7 8
0 1
1 981 1
2 .894 965 1
3 707 832 949 1
4 448 614 800 949 1
5 197 385 614 832 965 1
6 .001 197 447 707 894 981 1
7 —.140 .056 317 .600 .822 943 990 1
8 —~.241 —.047 218 515 759 904 970  .995 1
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the observation interval, only that the ordering of individuals in the initial
measure is similar to the ordering of individuals in the final measure. Whether or
not the same thing is being measured over time simply cannot be answered from
the correlation matrix on 2 couple of occasions of measurement, and it is
dangerous to do so. Even plotting the individual growth curves cannot com.
Pletely resolve this question, although large discontinuities in individual growth
would be cause for concern.

A sidenote message to this myth is that large individual differences in growth
lower the between-wave correlations. Myth 3 serves to discourage the study of
change for variables that have sizable individual differences in growth on the
grounds that these variables do not retain the same meaning over time . Thus,
variables that are chosen for study have high time 1-time 2 correlations, which
often results in low o3 (i.e, not much individual differences in change). In
reference to Myth 2, if there are little individual differences in change, what will
the difference score show? Low reliability. :

Reference notes

The results of Rogosa and Willett (1985b) can be used to obtain the between-
wave covariance and correlation functions for different forms of individual
growth; the results for straight-line growth were used in constructing the exam-
ple in Table 5-5. Rogosa et al. (1982, pp. 731-733) discuss the consequences for
the reliability of the difference score of limiting studies of change to variables
with high between-wave correlations (stability).

MYTH 4: THE CORRELATION BETWEEN CHANGE AND
INITIAL STATUS IS
(a) negative
(b) zero
(c) positive
(d) all of the above

Myth 4 is a multiple choice myth whose distractors have long-standing substan-
tive interpretations. A negative correlation between change and initial status is
best known as the Law of Initial Values (Lacey & Lacey, 1962; Wilder, 1957).
The negative correlation is also bound up with Regression Toward the Mean, as
will be seen in Myth 5. A zero correlation between change in initial status is
known as the Overlap Hypothesis, which dates back to Anderson (1939) and was
prominent in Bloom (1964). One interpretation of the Overlap Hypothesis is
that growth occurs via independent increments (similar to the formulation of
simplex models in Humphreys, 1960). A positive correlation between change
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and initial status corresponds to “fanspread” where variances increase over time.
The positive correlation can be described as “them that has, gets.”

The correct answer is (d),  all of the above, ” because the correlation between
change and initial status depends crucially on the choice of #1, the time at which
initial status is measured. For straight-line_growth, the correlation between
change and initial status is monotonically increasing, having a lower asymptote of
—1.0 for #; = —0o, passing through 0 for a single #, and increasing to an upper
asymptote of 1.0 for ¢, = . For almost any collection of growth curves, a very
different correlation between true change and true initial status will be obtained,
depending on whether the time of initial status is chosen to be later, earlier, or in
between—a likely reason that studies of academic growth obtain disparate es-
timates of the correlation between true change and true initial status.

One sidenote to the myth is that with fallibje scores, the correlation between
observed change and observed initial status js 2 poor estimate of the correlation
between true change and true initial status, The estimate is negatively biased in
addition to the attenuation (see, e.g., Rogosa et. al,, 1982, Eq. 11). Thus, because
of the poor properties of this estimate, negative correlations between observed
change and observed initial status are often obtained when the true-score cor-
relation is zero or positive. The myth is stated and discussed in terms of true
scotes because these are of primary substantive interest; although of less interest,
a similar dependence on time of initial status also holds for the observed
score correlation. :

Table 5-6 gives values of the correlation between the amount of true change
A, #; + ¢) and true initial status &@) fors=o0,. .., 7, using the collection of
straight-line growth curves for true scores shown in Figure 5-1. The correlation
does not depend on ¢. For each choice of %; a different value for the correlation

TABLE 5-6. Correlation between
Change and Initial Status for Straight-
line Growth Example in Figure 5-1

pXi(xi+c -X)

g Pepa =1 ¢=3
0 ~71 —50  —69
1 —.55 —48  —59
2 —32 —44 47
3 0 —36  —29
4 32 —.25 .00
5 55 ~.12 17
6 71 ~.02 30
7 80 02 42
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between change and initial status will be obtained. In this example, if initial
status is chosen to be time 1, the correlation is big and negative. If initial status is
time 3, the correlation is zero. And if initial status is time 5, the correlation is
positive. Time 3 is the only time of initial status that would satisfy Anderson’s
Overlap Hypothesis. The Law of Initial Values would be satisfied for any ¢,
< 3.

Table 5-6 also gives values of the correlation between observed initial status
X; and observed change X,,, — X; forc = 1, 3. The X; are based on the &@) for
this example, with the addition of measurement error (having equal error
variance over the 2,), producing reliabilities of the X; between .74 and .87, The
difference between the ¢ = 1 and ¢ = 3 values is attributable to the larger
reliability of the difference score for ¢ — 3; except for #; = 2, the ¢ = 3 observed
score correlation is closer to the true-score correlation. The difference between
the observed-score and true-score correlations is somewhat complex. For #, > 2
the observed-score correlation is always less than the true-score correlation, es-
pecially for non-negative values of the true-score correlation (#; > 3). For large
negative values of the true-score correlation, the attenuation and negative bias in
the observed-score correlation may offset each other.

Table 5-7 repeats the cxample for a different type of growth curve: exponen-
tial growth to an asymptote A instead of straight-line growth. This collection of
growth curves is illustrated in Figure 5-2. The exponential growth curves have
the form of equation (5-2) with y, =. This collection of growth curves was
constructed to have a between-wave correlation structure similar to that for the
straight-line growth example (with a translation of the time scale by 3 units).
The correlation between change and initial status is monotone increasing in #,,
and like straight-line growth the correlation strongly depends on the choice of #,.
Unlike straight-line growth the correlation is no longer symmetric about the
zero value, which for this example is 2, = 6.

Reference notes

Mathematical results for the form of Pr)a are obtained in Rogosa and Willett
(1985b) for straight-line growth, exponential growth, and the simplex model
(Eqgs. 9, 16, and 13, respectively). In terms of the notation and parameters of

TABLE 5-7. Correlation between Change and Initial
Status for Exponential Growth Example in Figure 5-2

" 3 4 5 6 7 8 9 10

Peupa —84 —67 =37 0 31 50 53 48
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FIGURE 5-2. An illustrative collection of ¢xponential growth curves in & following
Equation 5.2, with =Y. .




186 Methodological Issues in Aging Research

Rogosa and Willett (1985b), for the straight-line growth example the parameter
spedifications are #° = 3, k = 3. For the exponential growth example in Figure 5-
2 and Table 5-7, the parameter specifications are #° = 6; Y, =Y =.23; i = 30;
G} = 1.4, and o} = .437. Rogosa and Willett (1985b) also obtain the form of
the regression of change on initial status. Rogosa et al. (1982, pp. 734-735) ex-
amine the bias of the correlation between observed change and observed initial
status. Blomqvist (1977, Eq. 3.2) using straight-line growth and a linear rep-
resentation of individual differences in growth as a function of initial status (Eq.
3.1), obtains maximum likelihood estimates of the elements of the covariance
matrix of §(0) and 6. The results of Rogosa and Willett (1985b, Section 2) for
straight-line growth allow the construction of maximum-likelihood estimates of
the correlation between change and initial status or the regression of change on
initial status for #; other than #, = 0.

MYTH 5: YOU CAN'T AVOID REGRESSION
TOWARD THE MEAN

Typical statements of this myth are Furby (1973, p. 172), “Regression toward
the mean is ubiquitous in developmental psychological research” and Lord
(1963, p. 24), “The regression effect is one of the two main reasons why studies
of growth may become confusing or confused.” What is nearly ubiquitous about
regression toward the mean is the absence of explicit, defensible definitions of
the phenomenon. That is, regression toward the mean is often talked about but
rarely explicitly stated. Intuitively, regression toward the mean says that on the
average you are going to be closer to the mean at time 2 than you were at time 1.
The few formal statements of regression toward the mean in the literature
define it in standard deviation units: for example, Furby (1973, p. 174) and
Nesselroade, Stigler, and Baltes (1980, p. 623). Thus, in the population, regres-
sion toward the mean for true scores at times #, and ¢, is said to occur when

E[E(£;) | &) = C] = peg,y - C — Mgy

O¢(ry) Ge(sy)

(5.3)

Because this inequality is satisfied whenever Py s, < 1, regression toward the
mean is thought to be unavoidable. The formulation in Eq. (5.3) is best thought
of as a harmless mathematical tautology and one which provides little insight for
the study of change.

A more realistic definition of regression toward the mean uses the actual met-
ric of & to express closer to the mean at time 2 than at time 1. The alternative
formulation of regression toward the mean is

T

TR WY

gy e —

T I AT AP
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E[E() [ &()) = C] — Hgpp < C — g,y - (54)

Only if 0y, and O, are constrained to be equal, as is done in Lord (1963, p. 21)
and in Furby (1973, p. 173), is Eq. (5.4) equivalent to Eq. (5.3). Most important,
Eq. (5.4) is satisfied only when pg, o < 0 (Where A = A(#,, £,)). So, for the for-
mulation in Eq. (5.4), regression toward the mean is not ubiquitous; regression
toward the mean pertains only when the correlation between change and initial
status is negative. Myth 4 discusses conditions for this to hold.

The formulation in (5.4) corresponds to the original notion of Galton (1886)
much more closely than does Eq. (5.3). Specifically, Galton would indicate no
regression toward the mean if the time 2 on time 1 regression coefficient Beptey
is greater than or equal to one. This is equivalent to pg, 4 > 0, for which the in-
equality in Eq. (5.4) is not satisfied. By expressing the severity of the regression
cffect as the ratio '

E[&(+,) | &(2)) = C] — pyy,)
C — Mgy

= PEeyte) (5'5)

the correspondence of Eq. (5.4) to Galton’s formulation is seen.

The standard textbook representation of regression towatrd the mean employs
a picture of the time 2 on time 1 plot with an ellipse representing the bivariate
data (e.g., Nesselroade et al., 1980, Figure 1). For a choice of a time 1 value C, the
time 2 on time 1 regression line gives the expected value at time 2. The peculiar
aspect of this standard picture is that it is always drawn to show equal variances
at time 1 and time 2, making Eq;: (5.4) equivalent to Eq. (5.3). An alteration of
the standard picture in Figure 5-3 allows variance to inctease over time. Figure
5-3 shows that the expected value is farther away from the mean at time 2 than at
time 1. Thus, regression toward the mean does not hold. Another example is
seen in the collection of straight-line growth curves in Rogosa et al. (1982,
Figure 3).

Reference notes

Healy and Goldstein (1978), Rogosa et al. (1982, p. 735), and Rogosa and Willett
(1985b, Section 2.5) provide similar discussions of regression toward the mean
with reference to collections of individual growth curves. Rogosa and Willett
(1985b) define explicitly the conditions for Eq. (5.4) to hold. Nesselroade et al.
(1980) examine the structure of regression toward the mean for multioccasion
data. In the Nesselroade et al. paper, regression toward the mean is analyzed in
terms of correlation structures. Consequently, some regression toward the mean
will always pertain because of the standardization involved in the correlation
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FIGURE 5-3. An illustration based on the standard depiction of regression toward the
mean, in which regression toward the mean does not hold.

matrix. Nesselroade et al. use the term “egression from the mean” to describe a
regression toward the mean that is less severe between ¢, and #; than between #,
and #, (even though there is regression toward the mean between # and £).
Perhaps a better use of this term would be egression from the mean as the op-
posite of regression toward the mean, which would exist over the time interval
[, 2,] if and only if the correlation between () and A, 1) is positive.

MYTH 6: RESIDUAL CHANGE CURES WHAT AILS
THE DIFFERENCE SCORE

What ails the difference score, according to the psychometric literature, is low
reliability and negative correlation with initial status. The discussion of previous
myths has shown such deficiencies of the difference score to be more illusory
than real. Nonetheless, these concerns have motivated the use of residual change
scores. In terms of true scores, residual change is a deviation of true outcome at
time 2 from the regression prediction using time 1 information; using &(z,) as
the time 1 information yields a true residual change of the form &#2) — Mg,y —
Be,z, [6, (1) — M) With fallible measures, the usual sample estimate of residual
change is the residual from the observed-score time 2 on time 1 regression which
is denoted by R.

A look at the properties of R is not pretty. Bias? Yes; R may be a badly biased
estimate of true residual change. Precision? Not much; the sampling variability is
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rather large because R contains uncertainty both from measurement error and
from finite sample size in the regression adjustment. Reliability? At best, not
much better than the reliability of the difference score. Various modifications of
R, mainly intended to ameliorate the effects of measurement error on the
regression adjustment, do little to mend its severe defidiencies.

The demonstrations in the literature of superior reliability for residual change
use time 1-time 2 true-score correlations near one and equal true-score and
observed-score variances across time (Linn & Slinde, 1977, Table 2). Then, the
reliability of the difference score is near zero, yet the reliability of residual
change (even assuming an infinite sample size for making the regression adjust-
ment) is only negligibly better. With pg ¢, = 1, the reliability for residual change
is .09 for p(X) = .8 and .05 for p(X) = .9. Outside the extreme limitations of
that comparison, not even the slight advantage for the residual change score
holds up. Table 5-8 presents the reliability of the residual change score for dif-
ferent values of #, and 2, — #, using the same X; configuration as described for
Table 5-6. The reliability of residual change increases with #, — #, and depends
strongly on the choice of #,. Compare these entries with the reliability of the dif-
ference score of .133 for #, — #, = 1 and .58 for #, — #, = 3; this reliability does not
depend on #; as 67 does not change. Thus, for many #, values the difference score
is more reliable than residual change. The values given in Table 5-8 are obtained
from of Rogosa et al. (1982, Eq. 20), which is the squared correlation between
the true residual change and R; this formula inflates the actual reliability of R as
all available formulas for the reliability of residual change assume an infinite sam-
ple size for the regression adjustment (i.e., By,x, known).

The logical problems of the residual-change approach dwarf its technical
shortcomings. Instead of addressing the relatively simple question—how much
did individual p change on the attribute £&?—residual change attempts to assess
how much individual p would have changed on € if all individuals had started out
“equal.” The obvious questions is, equal on what—true initial status, observed
initial status, true initial status and other background characteristics? The cot-

TABLE 5-8. Reliability of
Residual Change for Straight-
line Growth Example

L—4
5 1 3
0 013 557
2 .145 .683
4 213 .487
6 .105 347
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rect answer is unknown, and it depends on the correct specification for the pre-
diction of change. The difficulties with residual change are analogous to those
with statistical comparisons of treatment effects in nonequivalent groups.
Residual change is one example of attempts to statistically adjust for preexisting
differences, which the literature on the analysis of quasi-experiments has shown
to be doomed to failure.

A major use of residual change measures is to detect correlates of change.
Questions about correlates of change are of the type, “What kind of people are
improving or gaining the most”? When the potential correlate is a variable
defining membership in an experimental group, the question is whether people
getting care or treatment are improving more than people who are not. Ques-
tions about correlates of change can be expressed in terms of systematic in-
dividual differences in growth. Individual differences in growth exist when
parameters of individual growth curves (e.g., the 6,) differ across individuals,
(e, some people grow faster than others). Individual differences in growth are
systematic if individual differences in a growth parameter can be linked with one
or more exogenous characteristics.

A common analysis consists of correlating the observed residual change with
an exogenous, individual characteristic denoted by W. Tucker, Damarin, and
Messick (1966) formed estimates of the correlation between the exogenous vari-
able and the true residual-change score. Lord (1963) presented a slightly dif-
ferent measure, which is equivalent to a partial correlation instead of the part
correlation in Tucker ez 4/,

The failure of these measures to assess systematic individual differences in
growth is demonstrated by an example using the collection of straight-line
growth curves illustrated in Figure 5-1. The example includes two cases. Case 1
is no systematic individual differences in growth; that is, the correlation pyy
between the exogenous variable and rate of change is zero. Case 2 is large sys-
tematic individual differences in growth; that is, pyg = .7. The example assumes
perfect measurement of § and W. Table 5-9 shows values of the correlation from
Tucker et al. (1966) P, z¢w fOr Ppo =0, .7. Table 5-10 repeats the display
for the partial correlation from Lord (1963) Pe,w.£¢)- When there are no sys-
tematic individual differences in growth, the correlations may be large positive
or large negative depending on the choice of #,. Even large systematic individual
differences in growth may result in near zero or even negative values of these
correlations. Thus, neither of these correlations can be counted on to assess cor-
relates of change.

Residual change correlations, whether partial or part correlations, are based
on an adjustment for the effects of initial status. And this adjustment naturally
depends on the choice of time at which initial status is measured. Thus, the at-
tempt to purge initial status from the measure of change fails. The fatal flaw of
the residual change procedures is the attempt to assess correlates of change by ig-
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TABLE 5-9. Valucs Of p[ﬁ(‘z)&(tl)]w
for Straight-line Growth Example

in Figure 5-1
21 Pre =0 Pwe =.7
0 .64 92
1 .50 92
2 .29 85
3 0 .70
4 —.29 47
5 —.50 .25
6 —.64 .07
7 —-.73 . =06
8 —-.78 -.15

noring individual growth. Questions about systematic individual differences in
growth cannot be answered without reference to individual growth. Yet these
time 1-time 2 correlation procedures valiantly attempt to do so.

Reference notes

Rogosa et al. (1982, pp. 738-741, p. 743, Appendix) enumerate the statistical,
psychometric, and logical shortcomings of the residual-change score as a measure
of individual change for both two-wave and multiwave longitudinal data.
Rogosa and Willett (1985b, Section 3) obtain the mathematical forms for the
Tucker et al. (1966) and Lord (1963) correlations and demonstrate the failure of
these procedures for the assessment of correlates of change. The values in Tables
5-9 and 5-10 were obtained from Rogosa and Willet (1985b, Eqgs. 23 & 24, re-

TABLE 5-10. Values of pg p.&))
for Straight-line Growth Example

in Figure 5-1
h Ppo =0 Pyo =7
0} .84 92
1 7 92
2 .56 91
3 0 .88
4 -.56 77
5 .77 54
6 —.84 18
7 —.89 —-.15
8 —-.90 —.37
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spectively) for a collection of straight-line growth curves with parameter values
#°=3, k=3; for case 1, Pwepoy =91, and for Case 2 pop=.7, Pyego) = -6,
t* = 6.5,and ' = .43, With multiwave data, an estimate of gy can be obtained by
correcting the observed correlation between 0 and W for attentuation using a
maximum-likelihood estimate of the reliability of 8 constructed by substituting
estimates from Blomgqvist (1977) into Equation 22 of Rogosa et al. (1982).

MYTH 7: ANALYSES OF COVARIANCE
MATRICES INFORM ABOUT CHANGE

This myth serves as an umbrella for illustrations of the unattractiveness of three
related approaches to the analysis of longitudinal data: path analysis, structural
regressions, and simplex models. These three procedures all use the between-
wave covariance matrix as the starting point for the statistical analysis. The main
message of this myth is that the between-wave covariance matrix provides little
information about change or growth. The examples illustrate this message.

Path Regressions Inform About Change?

Path analysis models for longitudinal data use the temporal ordering of the
measurements to delimit the possible paths between the variables. Consider the
example of a three-wave design with measures on X at times #,, #,, #,. The path
regressions for the unstandardized variables are

Xz = (12 + BIXI + 62
(5.6)
X, =0a; + B.X, + B,.X, + €3

Thus, the path analysis model includes direct paths from X, to X, and to X,
(parameters B, and B,, respectively) and from X, to X, (parameter B,). The path
coefficients are functions of the entries of the between-wave covariance ma-
trix. An example of the use of this model is Goldstein (1979), in which X is a
reading test score obtained on a nationwide British sample with measurements
of ages 7, 11, and 16. Goldstein obtains the following estimates: Bl = .841, [32 =
1.11, B, = —.147. The negative estimate for B, causes considerable discomfort, as
summarized by Goldstein:

This is difficult to interpret and may indicate that non-linear or interaction terms
should be included in the model, or perhaps that the change in score between seven
and 11 years is more important than the seven-year score itself. However, the addi-
tion of non-linear terms does not change this picture to any extent. (p- 139)
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(Although not central to the present discussion, Goldstein’s analysis employs
complex transformations of the measures to straighten the X, X;, scatterplots
and disattenuation of the sample regression coefficients.)

Compare those path analysis results with the following simple facts. Let the
true scores §(#) (i = 1, 2, 3) be determined by a straight-line growth curve for
cach individual (cf. Figure 5-1). Then the partial regression coefficients are

tz - t
Bewseen -ten = __i, R 0
2 1
| (5.7)
t3 - tl
Becy)eey -tey = S, >0
_ 2 —H

Remarkably, the parameters depend only on the times at which the observations
were taken, and thus neither regression coefficient contains any information
about growth! Estimates of either parameter are totally independent of the in-
formation in the data. The implications of Eq. (5.7) for the path analysis in
Eq. (5.6) are devastating. The first parameter in Eq. (5.7) corresponds to B, in
Eq. (5.6) and agrees with Goldstein’s negative .value of 8,, with the magnitude
affected by the data transformations and the success of the disattenuation pro-
cedures. The second parameter corresponds to B, and is consistent with
Goldstein’s positive value for 8,. Different results for the coefficients in Eq.
(5.7) will be obtained for different forms of the individual growth curve. The
compatison of the path analysis with the mathematical results for straight-line
growth attempts to illustrate some of the perils of summarizing the longitudinal
data by the analysis of the between-wave covariance matrix of the X, or even the
&(), thereby ignoring the analysis of individual growth.

Structural Regression Models Inform about Change?

Structural regression models are a more sophisticated but equally flawed ap-
proach to the analysis of longitudinal data. These models incorporate regression
relations among latent variables (i.e., £(#;)), with measurement models relating
the observed indicators (X)) to the latent variables. Estimation of these models is
based on fitting the covariance structure implied by the structural equation
model to the between-wave covariance matrix of the observations. Consider the
simple structural regression model shown in Figure 5-4 with one latent variable

- & observed at times #, and #, and a latent background measure, W. Each latent

variable has two indicators. This model is equivalent to the model for change in
alienation that appears frequently as an example in Jéreskog’s papers. The path
from W to &, represents the exogenous influence on change. The structural
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FIGURE 5-4. A depiction of the structural regression model for change in € with an ex-
ogenous variable, W.

parameter for that path is the regression coefficient for the latent variable at
time 2 on the exogenous variable, with the latent variable at time 1 partialed out.
In Joreskog’s example, where € is alienation and W js socioeconomic status
(SES), 2 negative estimate of this parameter is interpreted as indicating that high
SES reduces alienation.

What does the structural parameter Bg(,z),,,é(,l) reveal about exogenous in-
fluences on growth? Not vety much. For the simple case of a collection of
straight-line growth curves, this structural parameter has a complicated func-
tional form that depends strongly on the time chosen for the initial measure-
ment. The time span that pertains to a particular study is unknown and depends
on the particular substantive problem. For a specified relation between the
exogenous and variable and individual change, the structural parameter may be
positive, negative, or zero, dcpcnding on the choice of time of initial status, Also,
the structural parameter increases with the length of the interval berween
measurements. Consider two numerical examples based on the collection of
growth curves in Figure 5-1: ( 1) large influences of the exogenous variable (Pwe
=.7) and (2) no relation between the exogenous variable and rate of change.
Tables 5-11 shows values of the structural parameter for these two cases, with
*,—¢#, of 5 units. The entries in the Pew = 0 column should be compared with the
zero value of the corresponding regression coefficient Bag, s+ syw- For pgy, = .7,
the entries should be compared with the regression coefficient Bags+syp=5Bep
= .77. Thus, for both cases the structural regression coefficient may badly mis-
lead about exogenous influences on growth.

TR
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TABLE 5-11. Values of
Structural Regression Parameter
for Straight-line Growth Example

BC(tI+5)IV~ g(tI)

4 Pro=0  ppg=.7
0 85 .70

1 1.05 .85

2 1.15 1.0

3 0.0 1.2

4 —1.15 1.3

5 -—1.05 1.1

6 —.85 35

7 =70 =.25

8 =55 -5

Simplex Models Describe Most Longitudinal Data?

A third example of longitudinal analyses based on the between-wave
covariance matrix is the simplex model, which specifies a first-order autore-
gressive process for true scores. The numerical example in this section seeks to
caution against the propensity to base many analyses of longitudinal data on 2
simplex structure without careful consideration of the longitudinal data or of
alternative growth models. Expositions of covariance structure analyses have en-
couraged such thinking. Moreover, Werts, Linn, and Joreskog (1977) assert
“The simplex model appears to be particularly appropriate for studies of
academic growth” (p. 745). Well, maybe, maybe not. _

Consider the 5 x 5 correlation matrix for observed scores X, over five oc-
casions of observation in Table 5-12. To the eye, this correlation matrix corre-

TABLE 5-12. Observed-Score Correlation Matrix for
Simplex Example

X, X, X, X, X,
X, 1.000
X, 746 1.000
X, 727 741 1.000
X, 695 723 741 1.000
X, 656 695 727 746 1.000
Standard
deviation .787 771 .766 T71 .787
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sponds extremely well to a simplex. Correlations decrease away from the
diagonals, and on each subdiagonal the correlations are nearly equal. A
covariance structure analysis of the corresponding covariance matrix, using
LISREL with a quasi-simplex covariance structure, is exceptionally successful.
The reproduced covariance and correlation matrices are almost perfect; the root
mean square residuals are .003 and .006, respectively. The median discrepancy
for the 10 fitted correlations is .003. The chi-square fit statistic, which has five
degrees of freedom, is 2.13 (figured for 500 observations) with a p-value of .831.
So it seems LISREL is very successful in fitting: a2 simplex model to this
example.

Guttman’s (1954) condition for a simplex specifies that the partial correlation
between carlier and later true scores with an intervening time partialed out is
zero. This is the first-order Markov assumption. Straight-line growth turns out
to be maximally “unsimplex” in that this partial correlation is —1 instead of 0.
(For exponential growth the partial correlation is also —1.) The example in
Table 5-12 actually was generated from straight-line growth in the true scores.
Thus, the example shows that a simplex covariance structure marvelously fits a
covariance matrix from growth curves that are maximally unsimplex. The conse-
quences ate far from benign because even when the simplex model fits wonder-
fully, the results of the covariance structure analysis can badly mislead. The
covariance structure analyses usually 80 on to compute growth statistics and
reliability estimates based on the simplex model, and these growth statistics
(such as the correlation between true change and true initial status), estimated
from the LISREL analysis, can differ markedly from the actual values. Covar-
iance structure analyses provide very limited information about growth, in the
sense that covariance matrices arising from very different collections of growth
curves can be indistinguishable. Therefore, analyses of covariance structures can-
not support conclusions about growth. To reiterate my central message, analysis
of the collection of growth curves cannot be ignored.

Reference notes

Rogosa and Willett (1985b, Section 3.2.2) gives mathematical results for the
form of the structural regression parameter examined in “Structural Regression
Models Inform about Change’? (pp- 193). In their notation the example in
Table 5-11 used a collection of straight-line growth curves with parameter
values # = 3, kK = 3. For Equation 27 of Rogosa and Willett with Pow = 0, Pz o)
=91:6p,=1,T=5, and oé(,o) = .438. For Equation 26, with pg,, = .7: Prego) =
.6, ##=6.5,and #' = 43. The simplex example is excerpted from the more exten-
sive discussion in Rogosa and Willet (1985a).
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MYTH 8: STABILITY COEFFICIENTS ESTIMATE
(a) the consistency over time of an individual
(b) the consistency over time of an average individual
(c) the consistency over time of individual differences
(d) none of the above '
(e) some of the above

The absence or obscurity of definitions of stability, along with the proliferation
of stability coefficients, results in considerable ambiguity as to what a particular
stability coefficient is supposed to be estimating. Thus, it is fitting that this mul-
tiple choice myth possess a lack of clarity in the identification of the correct
answer. For some stability coefficients (d) is most correct; for others () is more
correct. Even when (€) is most appropriate, it is not always clear which of (a),
(b), (c) would be identified. A coefficient corresponding to choice (a) would be
based on an assessment of the heterogeneity (or lack thereof) in an individual’s
data over time. One procedure corresponding to choice (b) would be inferences
about the average growth curve using repeated measures analysis of variance;
that is, is the average growth curve flar? Regarding choice (c), correlation coef-
ficients are often used as measures of consistency of individual differences.

Rogosa et al. (1984) formulated two kinds of questions about stability, with
application to the stability of behavior. The first question—is an individual con-
sistent over time?—is rarely investigated. Unfortunately, substantive questions
about the heterogencity of an individual’s data over time or about individual dif-
ferences in heterogeneity rarely are addressed.

The second question—are individual differences consistent over time?—has
been the focus of most empirical investigations and the major use for the
menagerie of stability coefficients. Among the methods used for assessing
stability of individual differences are time 1—time 2 correlations, intraclass cot-
relations and generalizability coefficients, repeated-measures ANOVA, path
analysis regression, and structural equation models with exogenous variables.
The path analysis and structural regression coefficients are described in
Wheaton, Muthen, Alwin, and Summers (1977, Figures 1, 2). The intraclass cor-
relation approach fits a correlation matrix to multiwave data with all off.
diagonal elements equal. Whenever individual time trends exist in the data, the
intraclass correlation model will yield poor results. An example for science
education question-asking is Rosenshine (1973), in which a zero intraclass coef-
ficient is obtained because the between-wave correlation matrix contains both
big positive and big negative entries.

" The most attractive approach to assessing consistency of individual differ-

~ ences is the indices of tracking from the biometric literature, which assess main-

tenance of individual differences over time. Figure 5-5 depicts: collections of
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FIGURE 5-5. Two illustrations of perfect consistency of individual differences over
time.

growth curves displaying perfect maintenance of individual differences over
time; in Figure 5-5 individual differences are consistent across time whether the
criterion is maintenance of rank order or of absolute distance. The index of
tracking, v, presented by Foulkes and Davis (1981) assesses maintenance of rank
order over time; this index is the probability of two growth curves not crossing
in the specified time interval. Intersections of the individual growth curves are
thus evidence against tracking. No tracking is said to exist for y > .5, the
“chance level” for the probability of no crossings. As the time interval is
lengthened,  tends to decrease, as it is more difficult to maintain individual dif-
ferences over a longer interval.

Data on physical growth are used to illustrate the assessment of stability of in-
dividual differences. Measurements of the height (in millimeters) of the man-
dibular ramus bone on a sample of 20 boys at four half-year intervals from 8.0 to
9.5 years of age are given in Goldstein (1979, Table 4.1) and have been used as an
illustrative example in many papers on the analysis of growth curves. Each
individual’s data are very well described by a straight-line growth curve; the me-
dian squared multiple correlation for the fit of a straight line to the four obset-
vations is .95 for this sample, with upper and lower quartiles of .99 and 91.
Figure 5-6 plots the 20 fitted straight-line growth curves. The estimate of the
2 Foulkes-Davis Y index of tracking is .826, with an estimated standard error of

.032. Thus, these data show strong, but not perfect, maintenance of individual
differences over the 18-month interval.

Whereas the index of tracking provides a useful quantification of the consis-
tency of individual differences, the stability coefficients widely used in the
behavioral and social sciences mainly provide confusion. Numerical examples
based on the collection of straight-line growth curves in Figure 5-1 are used to
illustrate the properties of some of the stability coefficients. The coefficients for
measurements over a time interval [#, #z] are:

—IQ—MI WwWCIXDD
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FIGURE 5-6. The fitted straight-line growth curves for the ramus data.
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(2D the estimated index of tracking from Foulkes and Davis (1981),
Peepter) the product-moment correlation,
EepEE) the regression coefficient for later on earlier consecutive waves of
measurement proposed by Heise (1969),
Bg(tF)g(,I).W the structural regression coefficient for later on earlier latent
variables, with an exogenous variable partialed out, used by
Wheaton et al. (1977).

Tables 5-13 and 5-14 are structured to show the effects of different [#,#7] inter-
vals on the coefficients. The values of all coefficients except ¥ are determined by
formulas using the population moments of the collection of growth curves; only
Y is based on the §(#)) values for the 15 growth curves and has an estimated stan-
dard error less than .05 for all time intervals in the tables. All coefficients are
computed in terms of true scores; only ¥ will be relatively unaffected by errors
of measurement.

The coefficients differ among themselves for a given [#, #;] interval and differ,
often in strange ways, over different intervals. Using the criterion ¥ - 2[s.e.(¥)] >
.50, tracking exists for [#;, 7] in Table 5-13 for #; > 3, and for [0, ;] in Table 5-14,
tracking exists for # < 4. None of the other stability coefficients has an easily in-
terpretable scale. In fact, for the same degree of consistency of individual dif-
ferences (as assessed by ) the other coefficients vary wildly. Table 5-15 displays
two sets of [#;, #5] intervals with matching on the values of Y. For the intervals
[0,4] and [3,7] individual differences track according to the Foulkes-Davis ¥, yet
the regression coefficients are small, or negative for [0,4] and much larger for
[3,7]. The second set of intervals [5,7] and [0,3] show stronger tracking and
similar discordance in the regression coefficients.

TABLE 5-13. Stability Coefficients for Straight-line Growth over the
Interval [¢, 7] '

Beyeey - w

’ Y(17) Peepe() Benee Pre =0 Pro=.7
0 47 —-.14 -.17 —.98 —.09
1 53 .06 .08 -1.1 —.06
2 .38 32 .50 —93 —.007
3 .69 .60 1.00 1.0 —.12
4 .78 82 1.30 2.16 40
5 .88 94 1.31 1.71 - .83
6 97 .99 1.17 1.28 1.10
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TABLE 5-14. Stability Coefficients for Straight-line Growth over the
Interval [0, ¢] .

Bt v
Ip Y(0, #5) PEo)Eep Beeptw) Pre=0 pPpg=.7

1 93 98 .83 71 .85
2 .89 .89 .67 - 42 .70
3 .86 71 .50 .13 .55
4 .69 45 33 -.16 40
5 .59 .12 .17 —45 .25

6 49 .001 0 -75 11
7 47 —.14 —.16 —1.04 —.04

TABLE 5-15. Comparisons of Stability Coefficients for Intervals
Having the Same Tracking Index

' Beepsen v
o 2e] Y 2R) Peepter) Beupten Pro=0  pPpp=.7

[0, 4] .69 .60 33 —16 40
3, 7] .69 45 1.0 © 10 12
(s, 7] 88 94 1.3 1.71 83
[0, 3] 86 71 50 13 55,

Reference notes

Wohlwill (1973, Chap. 12) provides a lucid discussion and illustration of
research questions about stability arising in developmental research. Foulkes and
Davis (1981) and McMahan (1981) propose indices of tracking to assess consis-
tency of individual differences. Rogosa and Willett (1983a) provide empirical
comparisons of the two indices. Rogosa et al. (1984) formulate research ques-
tions about the stability of behavior; they also develop and illustrate statistical
procedures for the assessment of stability. The parameter values displayed in the
tables are obtained from results in Rogosa and Willett (1985b).

MYTH 9: CASUAL ANALYSES SUPPORT CAUSAL
INFERENCES ABOUT RECIPROCAL EFFECTS

The best-known procedure associated with Myth 9 is cross-lagged correlation. A
remarkable statement of the myth is provided by Crano and Mellon (1978):
“With the introduction of the cross-lagged panel correlation method . . ., causal
inferences based on correlational data obtained in longitudinal studies can be
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made and enjoy the same logical status as those derived in the more standard ex-
perimental settings” (p. 41). In other words, the use of cross-lagged correlation
dispenses with the nced for experiments, statistical models or careful data
analysis; a quick comparison of a few correlation coefficients is all that is re-
quired to study reciprocal effects. Well, I suppose that would be wonderful if it
were true.

The important thing to keep in mind is that questions about reciprocal effects
are very, very complex and difficult. A hierarchy of research questions about lon-
gitudinal data might start with describing how a single attribute—say, aggres-
sion—changes over time. A next step would be questions about individual dif-
ferences in change of aggression over time, especially correlates of change in
aggression. Only after such questions are well understood does it seem
reasonable to address a question about feedback or reciprocal effects, such as
how change in aggression relates to change in exposure to TV violence or, does
TV violence cause aggressive behavior? Despite the complexity of research ques-
tions about reciprocal effects, empirical research has attempted to answer the
oversimplified question, does X cause Y or does Y cause X? by casually compat-
ing a couple of correlations.

The mathematical and numerical demonstrations of the failures of cross-
lagged correlation in Rogosa (1980) had the following simple, limited structure.
Start with a basic path-analysis regression model for two variables, X and Y,
measured at times 1 and 2 (the popular two-wave, two-variable panel design)

X, =B, + B.X, + Y.Y, + %,

(5.8)
Y, =%+ B.X, + 1,7, + ».

In the context of the statistical model in Eq. (5.8) the parameters B, and v, rep-
resent the influence of a variable on itself over time. The parameters 8, and v,
represent the lagged, reciprocal causal effects between X and Y; thus, the
relative magnitudes of B, and v, indicate the nature of the reciprocal causal ef-
fects. In Rogosa (1980) combinations of B, and Y, values are compared with the
results of the method of cross-lagged correlation. Three examples from Rogosa
(1980) are shown in Figure 5-7. In the first frame, the cross-lagged correlations
are equal (.63), which indicates the conclusion of “spuriousness,” no direct causal
influences between X and Y, even though the model Eq. (5.8) stipulated that the
cffect from X to Y (B, = .42) is twice the effect from Y to X (v, =.21). In the
second frame the model stipulates lagged influences of equal magnitude, yet
cross-lagged correlation identifies X as the causal winner. In the third frame the
model stipulates an effect from Y to X nearly double the effect from X to Y. Yet
the attribution of causal predominance by cross-lagged correlation is the
opposite—X would be chosen the causal winner. These examples are simplified
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B=42 ¥,= 2 B2=40 ¥,=.40

B, = .70 KZ = .35 By = .30 3'2 = .55
X, \ .83 X, X, . .50 X,
, 63 , , -\.68 ,
60 57 .50 50

63 , , 55 |
Y, 60 Y, Y, 75 Y,

X, 50 X,

Y,

FIGURE 5-7. Numerical illustrations of misleading cross-lagged cortelations in two-
wave, two-variable panel data.

by the assumption of equal variances for X and Y; when variances change over
time, equations in Rogosa (1980) show that the comparison of the cross-lagged
correlations is even more unsatisfactory.

The major (and perhaps only) virtue of the path analysis model Eq. (5.8) is the
identification of specific parameters beljeved to represent the reciprocal ef-
fects. If this model of the reciprocal influences between X and Y were valid, then
estimation of B, and y, would inform about reciprocal effects. Perhaps the best
way to think about (Eq. 5.8) and the related structural regression models is that
these comprise a simple statistical model for reciprocal effects which, however,
may be a far from satisfactory scientific model of the psychological (etc.)
process. '

The real moral about the analysis of reciprocal effects is that you can’t es-
timate something without first defining it, and statistical models are a good way

- of defining the key parameters. But this does not imply that all statistical models

are sensible. The progress that has been made, especially in the use of structural
cquation modeling, is to move from no model at all to some statistical model.
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But having 2 statistical model does not mean it is an adequate scientific model.
Regrettably, the seductive simplicity of cross-lagged correlation has inhibited
serious work on the complex question of reciprocal effects.

Reference notes

Rogosa (1980) was only one in a tradition of papers, starting with Goldberger
(1971) and Heise (1970), sharply critical of cross-lagged correlation. Even Cook
and Campbell (1979, chap. 7) are unenthusiastic:about the usefulness of cross-
lagged correlation, yet most advocates and users of this procedure remain un-
daunted. Rogosa (1980) exposits 2 number of simple statistical models for recip-
rocal effects between two variables—structural regression models, continuous-
time feedback models, and multiple-time series models. The mathematical
results in Rogosa (1980) demonstrate the inability of the method of cross-lagged
correlation to recover the structure of the reciprocal effects specified by these
models. Results and numerical examples are presented for two-wave and mul-
tiwave data. Rogosa (1985) provides a nontechnical overview and extensive
references on approaches to the analysis of reciprocal effects.

DISCUSSION

The message of the myths, which is carried through into my work on statistical
methods for longitudinal data, is that models for collections of growth curves
are the proper basis for the statistical analysis of longitudinal data. The nature of
research questions about growth and development makes these models a natural,
if not essential, starting point. What I tried to do with these myths was to indi-
cate some of the beliefs that have impeded doing good longitudinal research.
The myths have served either to make the analysis of change appear prohibitively
difficult or to direct research in unproductive directions. Rather simple ap-
proaches work well with longitudinal data, and much progress can be made using
straightforward descriptive analysis of individual trajectories followed by statis-
tical estimation procedures for collections of growth curves. Although only a
small number of observations often are available in empirical research, the
resulting difficulties in statistical estimation arising from these limited lon-
gitudinal designs should not alter the research questions or the proper
statistical models.

The nine myths discussed in this chapter are not exhaustive. Two additional
candidates deserve some mention. The first could be stated as “The average
growth curve informs about individual growth.” This myth dominated practice
in psychological learning experiments, although Estes (1956) demonstrated that
the learning curve obtained from averaging individual responses at each trial was
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equivalent to the average of the individual learning curves only for special forms
of the learning curve. This myth has also impeded studies of physical maturation
(Bock, 1979). Another setting for this myth is the analysis of longitudinal data
with a hierarchical or multilevel structure (Rogosa, 1979, pp. 168-174). A sec-
ond candidate myth is that “Standardizing longitudinal data can be useful.” An
inexplicable champion of this myth is Goldstein (1983). Standardization renders
impossible useful analyses of longitudinial data by removing essential informa-
tion about individual growth and individual differences in growth. A related, but
complex, issue is the effects of different metrics/transformations of X on the
longitudinal analysis. .

The myths speak against what I call the “Avoid Change at Any Cost Academy
of Longitudinal Research,” which recommends analyses that try to draw complex
conclusions about change over time without any examination of individual
growth. That doctrine appears counterproductive, as these myths and my techni-
cal papers so demonstrate. The doctrine of this Academy is sometimes justified
by overinterpretations of the often-quoted last sentence of Cronbach and Furby
(1970, p. 79): “Investigators who ask questions regarding gain [difference]
scores would ordinarily be better advised to frame their questions another way.”
This statement could be regarded as a meta-myth. The factual basis for their con-
clusion is the shortcomings of the estimate of the amount of change from only
two observations. But such facts do not support abandoning the framing of
research questions about growth and change in a natural way. The suggested sur-
render to uninformative regression and residual-change analyses is to be much
lamented; the proper lesson to draw from difficulties with the difference score is
that richer longitudinal designs and the application of appropriate statistical
models for the longitudinal data are needed.

An appropriate question to be raised at this point is, where do we go from
here? The myths serve more to discredit popular analysis procedures than to pre-
scribe replacements. This function is important in the sense of “first things
first”; the groundwork for new approaches requires some appreciation of the
flaws of past and current thinking. _

Statistical methods respond to (well-formulated) research questions. Natur-
ally, there is no single statistical procedure for the analysis of longitudinal data;
different research questions dictate different data structures and thus different
statistical models and methods. Although at present, the “toolkit” of dependable
methods for the analysis of longitudinal data is not complete, I do believe that
the natural approach of statistical modeling of individual time trajectories (pro-
moted in this chapter and in my technical papers) serves well as the common
basis for the development of statistical methods. To follow on this theme of the
linking of research questions and useful statistical methods, I close this chapter
with an organization of seven research topics (questions) commonly addressed
with longitudinal data. The parenthetical listing of Myths under each topic in-
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dicates relevant portions of this chapter, but no attempt is made here to survey
the available statistical procedures and literature.

L. Individual and group growth (Myths 1, 2, 5, 6). A basic type of question in
longitudinal research concerns description of the form and amount of change.
Such questions may be posed for an individual case or for the average of a group
or subgroup of cases. Interest centers on the estimation of the individual (or
group) growth curve, the heterogeneity (individual differences) in the in-
dividual growth curves, and the statistical and : psychometric properties of
these estimates.

2. Correlases and predictors of change (Myths 6, 7). Questions about systematic
individual differences in growth are a natural sequel to the description of in-
dividual growth. A typical research question is given by “What kind of persons
learn [grow] fastest?” (Cronbach & Furby, 1970, p. 77). The key quantities are
the associations between parameters of the individual growth curves and the
correlate(s) of change, which may be exogenous individual characteristics
(c-g-, gender, IQ) or the initial status on the attribute measured over time.

3. Stability over time (Myrh 8). Questions about consistency over time are a
natural complement to questions about change. In the behavioral sciences litera-
ture many different research questions fall under the heading of “stability.” Two
key topics are the consistency over time of an individual and the consistency of
individual differences over time.

4. Comparing experimental groups. The comparison of change across experi-
mental groups is a standard, well-developed area of statistical methodology em-
ploying some form of repeated measures analysis of variance. When the effects
of each treatment can be assumed identical for all members within each group
(no individual differences in response to treatment), comparison of the
parameters of the group growth curves yields inferences about the “treatment
effects.”

5. Comparing nonexperimental groups (Myths 1, 6).  The comparison of change
among nonexperimental or nonequivalent groups has been a central topic in the
methodology for the evaluation of social programs. The practical or political dif-
ficulties of random assignment of individuals to treatment are sometimes
overwhelming in a field trial of 2 program. Yet the question of the relative ef-
ficacies of each program/treatment remains. The extensive literature on this
topic is dominated by the application of statistical adjustment procedures
(analysis of covariance and relatives) to very meager (pretest-posttest) lon-
gitudinal data.

6. Analysis of reciprocal effects (Myth 9).  As discussed in Myth 9, questions
about reciprocal effects are common and complex. Clearly, considerable empit-
ical research on simpler longitudinal questions should precede attempts to assess
reciprocal effects. Despite the complexity of these questions, empirical research
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has attempted to answer the oversimplified question, “Does X cause Y or does Y
cause X?” from meager longitudinal data by casually comparing a couple of cor-
relations (or structural regression coefficients). :

7. Growth in multiple measures. All questions about growth in a single at-
tribute have extensions to multiple attributes. Natural questions include relative
strengths and weaknesses in individual and group growth and associations of
rates of growth across multiple atcributes.
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SUPPLEMENTAL QUESTIONS AND ANSWERS

1. SHOULD LISREL (STRUCTURAL EQUATION
MODELING) ANALYSES ALWAYS BE AVOIDED?

In general, my answer is yes. Analyses of relationships among variables are fun-
damentally inadequate and askew, because such analyses do not address the indi-
vidual level processes that generate the data. My analyses and results in making
this argument are less ambitious than the heroic efforts of David Freedman
(1987, 1991) who takes on these modeling issues in real-life research settings. In
his critique of path analysis applications, Freedman (1987) makes an important
appeal for more serious (rather than casual) attention to model building: “My
opinion is that investigators need to think more about the underlying social proces-
ses . . .”. and he argues that “as if by experiment” conclusions “must depend on a
theory of how the data came to be generated.” Continuing this theme, Freedman
(1991) promotes the value of “shoe leather” science (close examination of the phe-
nomena) as contrasted with the social science practice of (causal) inferences based
on regression models for distant information (e.g., survey data, archival data).

For the longitudinal research setting, my answer is emphatically yes if the
goal is to address longitudinal research questions like those listed previously.
Longitudinal research examples have been prominent in expositions and illustra-
tions of structural equation methods, and claims for the usefulness of structural
equation methods are common—for example, according to Alwin (1988), struc-
tural equation methods “are perhaps most useful in longitudinal research designs
where the research questions involve the descriptive analysis of change and its
explanation” (p. 74). But the facts are that the parameters estimated in the
standard structural equation model applications have little or no relevance to
parameters of interest (i.e., those defined by useful longitudinal research ques-
tions). The main problems with the use of structural equation models is not in the
details of those estimation procedures, but in the meaninglessness of the parame-
ters being estimated. To supplement the brief exposition in Myth 7, here I give
some detailed data examples of the inadequacies of the standard structural equa-
tion models approach, continuing the results and examples in Rogosa (1987,
1993). The expository strategy is to create an example of longitudinal data with
simple and known structure and then see what results would be indicated by the
standard structural equation modeling analyses.

The data example was chosen to be small and manageable. From a population
of individuals, a data set of 40 cases, each observed at three time points, is
drawn. For each individual the true observations fall on a straight-line growth
curve (as in Figure 1.1). So for each case there is a longitudinal record with the
times of observation having values {1, 3, 5}; in addition there is a background
exogenous variable for each individual. Shown in Exhibit 1 are the values of the
true scores, denoted by £(¢;), and the exogenous variable W. The mean rate of
change in the population is 5, with individual rates of change ranging between 0
and 9. The rate of change has zero correlation with the background variable, W.
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EXHIBIT 1: STRAIGHT-LINE GROWTH DATA,

LISREL EXAMPLE

CASE §(1) §(3)
1 37.56 49.29
2 45.65 51.58
3 40.94 52.88
4 47.36 55.45
5 52.71 62.70
6 30.45 46.34
7 43.65 58.37
8 41.16 49.26
9 44.15 52.00

10 38.16 46.59

11 37.68 39.87

12 45.30 54.38

13 39.37 48.15

14 36.66 43.75

15 53.40 62.32

16 59.35 62.80

17 53.14 64.35

18 44.90 58.82

19 41.79 59.44

20 38.25 48.98

21 47.24 60.79

22 53.57 67.71

23 35.54 43.51

24 37.54 50.25

25 37.07 49.71

26 32.40 44.69

27 45.22 62.08

28 35.67 47.42

29 38.30 51.13

30 52.61 55.52

31 38.36 48.49

32 45.14 51.44

33 53.82 64.27

34 49.46 61.42

35 56.29 59.04

36 49.59 57.58

37 41.45 59.43

38 47.42 57.42

39 57.00 65.73

40 41.06 43.54

Data Description.

MEAN MEDIAN

E(1) 44.16 43.90

E(3) 54.21 53.63

§(5) 64.27 63.21

w 14.99 15.20

Correlations

§(L)

£(3) 0.842

E(5) 0.536

w 0.766

0.
0.

E(5) W
61.02  15.97
57.51  15.38
64.82  11.48
63.54 16.89
72.70 19.18
62.23 11.82
73.09  15.33
57370 <1321
59.84  13.09
55.03  10.32
42.06 10.26
63.47 15.60
56.94 13.90
50.84  13.53
71.23  14.45
66.25 20.16
75.56  16.11
72.75 15.06
77.09 18.33
59.71  13.77
74.34 15.88
81.84  18.25
51.48  10.15
62.95 9.46
62.35 15.81
56.98  11.60
78.94  14.08
59.17 12.19
63.97  14.07
58.42  16.68
58.62  15.07
57.73  13.94
74.73  20.40
73.39  16.00
61.80 17.47
65.57 17.30
77.41  15.86
67.43  18.95
74.47 18.90
46.03 13.79

STDEV

7.24

7.24

9.24

2.803
§(3) E(5)
907

765 0.598
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Exhibit 1: Scatterplots between the &-values and scatterplots be-

tween W and the &-values.
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The scatterplots displayed in Exhibit 1 show that although the &(r;) are generated
from straight-line individual growth curves, the between-variable scatterplots
appear rather ordinary. That is, the standard view of between-variable relation-
ships would not cause any concerns for a between-variable regression analysis.

Causal Influences on Change: Three-Waves,
Single Variable

In this illustration we revisit the substantive setting of the first section of Myth 7
(relating to the discussion of the Goldstein example). With three observations on
each individual, what can be learned about individual change, individual differ-
ences in change, and so forth? To supplement the argument in Myth 7 that the
three-wave path analysis is uninformative, the data example in Exhibit 1 is used
to illustrate the results in Equation 1.7. In terms of true scores, the pictorial form
of the structural regression model is shown in Figure 1.8.

The regression for £(z) matches exactly the theoretical results from Equation
1.7—B3 = (3 = 5)/3 — 1) and B, = (5 — 1)/(3 — 1)—with squared multiple
correlation of 1.0. The “structural coefficients” contain no information from the
data, nonetheless about causal effects. So what can be learned about change from
such an analysis? Annotated MINITAB output for the regression is

The regression equationis
€(5) =~0.000003-1.00&C1) +2.00&(3)

Predictor Coef Stdev t-ratio o}
Constant —0.00000309 0.00000 L
£C1) —-1.00000 0.00 * %
£€(3) 2.00000 0.00 *  ox
5 =0 R-sq=100.0% R-sq(adj)=100.0%

Rogosa (1993, Equation 6 and Figure 4) gives the theoretical result for the
corresponding path analysis regression on fallible observed scores. For this data
example observed scores were generated by adding measurement error having
variance 10; resulting reliabilities for the scores at times {1, 3, 5} are {.84, .84,

&1 | & [——|&;

BT

FIG. 1.8. Representation of three-wave structural regression model.
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.90}. The path analysis regression for X(5) for these 40 cases produces the fit:
X(5) = 5.054 — .1212 X(1) + 1.19 X(3) with squared multiple correlation .552.
Also in Rogosa (1993) are results and illustrations of similar failures for the
structural regression model approach when the underlying individual growth
curves are not simple straight line, but exponential growth to an asymptote (as in
Equation 1.2).

Exogenous Variable and éhange: Two Waves

To illustrate the second part of Myth 7, we use the data example from Exhibit 1 to
illustrate the misleading consequences of basing an analysis of the standard
structural model shown in Figure 1.4—two waves with an exogenous variable.
In the population from which the example data are drawn there is no association
between the background variable W and individual rate of change 0; py, = 0.
Table 1.11 gives numerical theoretical results that the structural (causal) regres-
sion coefficients may be large positive or large negative even when pys = 0. The
results of the structural regression using the example data set are shown below.
When £(3) is used as the initial value the structural coefficient for the influence of
W on change is significant with a negative value and when &(1) is used as the
initial value the structural coefficient for the influence of W on change is signifi-
cant with a positive value.

1. &3) as the Initial Value

The regression equation is
£§(5) =0.68 ~0.757 W+ 1.38£(3)

Predictor Coef Stdev t-ratio P
constant 0.683 4,555 0.15 0.882
W -0.7570 0.3329 -2.27 0.029
£(3) 1.3822 0.1290 10.72 0.000
s = 3.7582 R-sq =84.4% R-sq(adj) = 83.5%

2. &(1) as the Initial Value

The regression equation is
€(5) =31.2+1.50W+0.239&C1)

Predictor Coef Stdev t-ratio p
Constant 31.213 7.546 4.14 0.000
W 1.5004 0.6678 2.25 0.031
£C1) 0.2392 0.2587 0.92 0.361



2. WHAT ARE USEFUL DATA ANALYSIS
APPROACHES?

Data analysis strategies and methods follow directly from the modeling approach
that is the basis for the original Myths chapter. The unifying theme is that all
questions can be addressed by models and methods that start with the individual
unit trajectories. Thus, useful methods for the analysis of longitudinal data take
as the starting point a model for the individual history.

The simplest instance of this type of model for a quantitative outcome is a
straight-line growth curve for each individual. Fitting such a model to the indi-
vidual’s data points can be thought of as using the model to smooth the data in
order to derive an attribute for the individual, such as the rate of improvement or
decline in that measure. The power of this approach is the straightforward way in
which such analyses can be built up for complex settings (e.g., comparing
groups, assessments of stability, and so forth) without losing firm contact with
the data. The examples given here illustrate analyses directed toward the first
three questions described in the previous listing of research questions: (a) indi-
vidual and group growth: description and estimation of the form and amount of
change; (b) correlates and predictors of change: systematic individual differences
in growth such as the question “What kind of persons learn (grow) fastest?”; (c)
stability over time: consistency over time of individuals and individual differ-
ences. (Note that here we are limited to questions about quantitative outcomes,
such as functional abilities or blood pressure.)

In this exposition, sketches of analyses are presented for two examples of
actual longitudinal panel data: (1) the Ramus data (briefly treated as part of Myth
8), which consist of four longitudinal observations on each of 20 individuals with
no exogenous measure and (2) the North Carolina data, which consist of eight
longitudinal observations on each of 277 individuals and with an exogenous
ability measure. These analyses methods typically work well for four or more
longitudinal observations on each individual (although some missing data can be
accommodated). Three longitudinal observations is an absolute minimum for the
statistical procedures. In the subsequent question (Question 3: “What can be
done with meager time-1, time-2 data?”), the situation of just two longitudinal
observations is discussed; artificial time-1, time-2 data is used to illustrate the
limited, but useful, descriptive analyses that can be supported when just two
observations are available (the traditional measurement of change pre-test, post-
test setting). In addition, these methods are contrasted with the (misleading)
traditional measurement of change analysis procedures that are based on
between-variable relations (see also Myth 6).

Data Structures

The simplest structure of the longitudinal panel data is illustrated by the display
of the first four cases from the North Carolina achievement data (Williamson,
46
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Applebaum, & Epanchin, 1991), shown below (total 277 females). Each individ-
ual has a row of data; the first column contains the verbal ability score, which is
used as the exogenous background measure, W. The multiple longitudinal obser-
vations follow: eight waves of achievement test scores in math (grades 1-8).

W T-— 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0
120 380 377 460 472 495 566 637 628
95 362 382 392 475 475 543 601 576
99 387 405 438 418 484 533 570 589
101 342 368 408 422 470 543 493 589

Model and Parameters of Interest
Form of the Individual Growth Curve

The simplest model, which serves as a basis for these data analysis examples,
is the straight-line growth model,

£, = £,0) + 6,4,

where £,(¢) is the true score of person p at time ¢ and 0, is the constant rate of
change for person p. The straight-line growth model is useful for heuristic
reasons because of its simplicity, as it yields a simple index for individual rate of
progress. In addition, in applications, straight-line growth serves as a useful
approximation to actual growth processes (see Hui & Berger 1983, p. 753;
Rogosa & Willett 1985b, p. 205). Moreover, when observations at only a few
time points are available (e.g., T = 4) the data may justify the estimation of
nothing more complicated than a constant-rate-of-change model. Although many
uses of straight-line growth curves can be justified, nonlinear growth functions
may be crucially important in many applications, and methods for straight-line
growth curves should be thought of as a first approximation toward the use of
more complex growth models.

Individual Change

Thus, estimates of 8, provide a simple index for individual rate of learning.
The parameter 6, is closely related to the amount of true change; for example, in
two-wave (or pre-post) data, true change is equal to 0,(z; — 1;). Growth curves
for different individuals have different values of rate of change 6, and level £,0).
When describing the learning of a group of individuals, the distribution, over
individuals, of empirical rates of learning is informative. The first two moments
of the rate of change are w, and o3. Similarly, we may want to describe the
variability in level of performance at each time, §p(t). As it turns out, the
variance of §,(r) has a functional dependence on time, and investigation of
the form of this function leads naturally to the definition of a “centering” point
and a scaling factor associated with the time scale. These have been denoted ¢°
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and K, respectively. (See Rogosa and Willett, 1985b.) Both ° and « are proper-
ties of the particular collection of straight-line growth curves.

Correlation Between Change and Initial Status

Another quantity of central importance is the correlation between change, 6,
and initial status, §(z;), where ¢, indicates initial time of measurement, and this
was discussed in Myth 4. The correlation is used to investigate whether those
with lowest initial status make the most progress (negative value) or those with
the highest initial status make the most progress (positive value). As discussed in
Rogosa and Willett (1985b), the choice of ¢ is of critical importance because
Pe(ry0 18 functionally dependent on time. (The definitions of #° and x also arise
naturally from an investigation of this dependence; see Rogosa and Willett,
1985b.)

Consistency of Individual Differences

As discussed in Myth 8, the index y was proposed by Foulkes and Davis
(1981) as an index of tracking, and is defined as the probability that two ran-
domly chosen growth curves do not intersect. High values of v indicate high
consistency of individual differences over time. Another way of interpreting vy is
to note that high values of vy denote “the maintenance over time of relative
ranking within the response distribution” (Foulkes & Davis, 1981, p. 439). Thus
v indicates the stability of individual differences. If a collection of individual
growth curves have a high estimated value of <, that indicates that individuals
that started out relatively high maintain that advantage and individuals starting
out low retain that disadvantage (regardless of the overall growth rate).

Systematic Individual Differences

To address additional research questions about systematic individual differ-
ences in growth (i.e., correlates of change) longitudinal data sets often include
measurements on one or more exogenous characteristic which are denoted here
by W (e.g., home environment). This terminology derives from the structure of
the inquiry that: “Individual differences in growth exist when different individu-
als have different values of 8,. Systematic individual differences in growth exist
when individual differences in a growth parameter such as 0, can be linked with
one or more W’s” (Rogosa and Willett 1985b p. 205). A model for individual
differences in growth is needed for investigating systematic individual differ-
ences in growth. For the purpose of this exposition, W is regarded as measured
without error; in practice, with fallible measurement interest would normally be
on relations between 6, and the true score underlying W. The relation of W to the
slope parameter, summarized by the conditional expectation E(0 | W), is stated
here as the simplest possible straight-line regression.

E®|W) = pgy + Bow(W — Hw)-
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This equation for E( | W) is an example of a “between-unit” model. A similar
relation can be stated for the intercept in the equation for £,(1). In the case where
there is no measured exogenous variable, this between-unit model is E©) = .

A common procedure in the literature is to correlate the value of the back-
ground demographic variable or curricular variable with performance at a given
time. That is, the cross-sectional correlation is computed, sometimes for every
occasion in time. For example, with a background variable, W, correlations of
the test score with W at various grades would be computed, and from these
correlations conclusions about learning are attempted. Rogosa and Willett
(1985b) have shown that such cross-sectional correlations are not useful for this
purpose. To illustrate, consider a situation where the correlation between true
rate of change and the background variable is zero. Then the correlation between
the true test score, £(¢), and the demographic variable, W, at any one slice in time
could be big or small. Consequently, this correlation really doesn’t inform about
systematic individual differences in learning. The reverse is true also. Consider :
demographic variable for which this correlation is large. Regardless, the correla
tion between the background variable and a test score at a specific time can b
positive, zero, or negative depending upon the time chosen for the cross
sectional correlation. Obviously, no useful conclusions about learning can t
drawn from the cross-sectional correlations.

Data Analysis and Parameter Estimation

Since 1981, I have used various versions of a program we call TIMEPATH (ori
nally developed with the assistance of John Willett and Gary Williamson, «.._
current version written with Ghassan Ghandour) for the analysis of quantitative
longitudinal panel data. In this program, ordinary least-squares regression is used
to estimate the growth curve model from the longitudinal data for each individu-
al. As the empirical rate of change can be treated as an attribute of an individual
(just like a measurement on X or W), the obtained slopes for each individual
regression can be profitably used for various descriptive analyses. Such descrip-
tive analyses may, in many situations, be more important and informative than
the formal parameter estimation.

To estimate many of the parameters discussed above, maximum likelihood
estimates derived from the results in Blomqvist (1977) are used. In the current
program (Rogosa & Ghandour, 1989), standard errors for these parameter esti-
mates and confidence intervals for the parameters are obtained by bootstrap
resampling methods in which rows (individual units) are resampled. In Tables
1.17 and 1.18, the reported standard errors are just the standard deviation over
4,000 bootstrap replications, and the endpoints of the reported 90% confidence
intervals are just the 5% and 95% values of the empirical distributions from the
resampling (i.e., the 200th values from the maximum and minimum values).
More sophisticated and more accurate confidence intervals could be constructed
using the methods in Efron and Tibshirani (1993), but these simpler intervals
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were chosen for the purposes of this exposition. In Rogosa and Saner (in press),
equivalences obtained from the application of newer computational programs
based on hierarchical linear model methodology (especially the HLM program of
Bryk & Raudenbush; Bryk & Raudenbush, 1987) for these data are illustrated
and some shortcomings discussed. More technical detail on estimation can be
found in Rogosa and Saner (in press). When present, missing longitudinal obser-
vations are treated (deliberately) in a very simple manner—the individual growth
curves are fit to the data that are present, and the overall SSE from the individual
fits is just weighted according to the observations present.

Descriptive Analyses of Growth Rates

The most basic step in the analysis is the fitting of a straight-line growth curve
(the regression of X on ¢ for each p) by ordinary least squares. The estimates of
slope, squared multiple correlation, and other properties of the straight-line fit
including diagnostics can be displayed and summarized (see for example the
output in Table 1.16). Estimation of the straight-line growth model allows com-
parisons of rates of change across individuals. Stem-and-leaf diagrams, box-
plots, and the five-number summaries of the empirical rates are useful ways to
describe both typical rates of learning and the heterogeneity across individuals
(see, for example, Figure 1.9). Using the estimated f)p values for each individual,
plots representing relations of change with initial status (see Figure 1.10) and
relations with the exogenous measure W (see Figure 1.12) are especially useful
for diagnostic examination of the corresponding correlation parameter estimates.

Parameter Estimates

Tables 1.17 and 1.18 present a collection of parameter estimates based on the
growth curve model. As a first step, parameters of interest are “typical” rates of
change pq or median(0), and a measure of heterogeneity og, the variance of the
6,. Point and interval estimates are provided by the bootstrap resampling. The
estimate of the reliability p(d) is simply the estimate of o} divided by the
observed variance of the ép. Our statistical procedures provide a maximum
likelihood estimate of the correlation between true rate of change and true initial
status pg,o; the data examples show one negative value and one positive value
for this correlation. A good estimate of this correlation is made possible by the
availability of multiple (e.g., four or more) longitudinal observations; a perva-
sive problem in the pre-test, post-test dominated measurement of change litera-
ture was that when only two observations were available, the only estimate was
the correlation between observed change and observed initial status which may
have large, usually negative, bias (see Rogosa et al., 1982). Systematic individu-
al differences in growth are indicated in these analyses by the quantity pg,, or by
Bew; for example, nonzero values of B4y, indicate that W is a predictor of growth.
Maximum likelihood estimates of these parameters are simply obtained by disat-
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tentuating the observed relations by use of the estimate of p(8); point estimates
along with bootstrap standard error and confidence intervals are given for the
North Carolina data in Table 1.18, which shows strong relations of 8 with the
verbal ability measure.

For the consistency of individual differences, as discussed in Myth 8§, the
index -y was proposed by Foulkes and Davis (1981) as an index of tracking, and
is defined as the probability that two randomly chosen growth curves do not
intersect. High values of <y indicate high consistency of individual differences
over time. The probability of no intersection is estimated from a count of the
number of intersections that each individual trajectory has with the other individ-
uals; for each individual 4, is one minus the number of intersections over n — 1%
Individuals with a low value of 4, are those whose relative standing changes
considerably over the time period. The proportion of no intersections is accumu-
lated over the n individuals to produce an overall 4 estimate. The standard error
can be obtained from a jackknife approximation given by Foulkes and Davis
(1981) or by using bootstrap resampling. The value of 4 in both Tables 1.17 and
1.18 indicate reasonably strong tracking.

Ramus Data

The first data example consists of four longitudinal observations on each of 20
cases. The measurement is the height of the mandibular ramus bone {in mm) for
boys each measured at 8, 8.5, 9, 9.5 years of age. These data, which have been
used by a number of authors, can be found in Table 4.1 of Goldstein (1979a).
These data are small enough that it is convenient to present extended output.
Fitting a straight line to-each individual’s observations yields output from the
TIMEPATH program that is shown in part in Table 1.16. In Table 1.16, the
columns are the ID number for the case, Rate the estimated rate of change
(slope of the straight-line growth curve), R_sqr the squared multiple correlation
for the straight-line fit, D_R s q the increase in squared multiple correlation result-
ing from fitting a quadratic form (useful for detecting cases with large curvature),
and the final columns contain the longitudinal observations.

This output provides the raw information and is a very first step in describing
individual change. It can be seen that these individual histories correspond
closely to the straight-line model by examining the individual R? (or the corre-
sponding mean-square residuals) from each fit. For these data the median R? is
.95, with only two of the 20 values below .91. For the individual rates of change
both numerical summaries such as that below and graphical descriptive summa-
ries as in Figure 1.9 are useful:

Rate of Change
N MEAN MEDIAN STDEV MIN MAX a1 Q3
20 1.866 1.500 1.165 0.460 4.960 1.205 2.010
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TABLE 1.16
TIMEPATH Individual Fit Qutput for Ramus Data
D Rate R_sqr D_Rsq - 8.00 8.50 9.00 9.50
1 1.180 94.2 1.2 47.80 48.80 49.00 49.70
2 1.280 97.9 6 46.40 47.30 47.70 48.40
3 1.520 98.6 3 46.30 46.80 47.80 48.50
4 1.420 92.4 7.4 45.10 45.30 46.10 47.20
5 1.100 95.3 3.9 47.60 48.50 48.90 49.30
6 .740 91.5 3.1 52.50 53.20 53.30 53.70
7 2.240 90.5 9.2 51.20 53.00 54.30 54.50
8 1.800 74.2 22.2 49.80 50.00 50.30 52.70
9 4.080 98.8 4 48.10 50.80 52.30 54.40
10 2.040 90.6 4.3 45.00 47.00 47.30 48.30
1 .460 99.0 .8 51.20 51.40 51.60 51.90
12 4.960 94.5 25 48.50 49.20 53.00 55.50
13 1.920 98.0 1.9 52.10 52.80 53.70 55.00
14 1.040 98.8 .6 48.20 48.90 49.30 49.80
15 1.480 99.6 .4 49.60 50.40 51.20 51.80
16 1.760 98.8 1.0 50.70 51.70 52.70 53.30
17 1.520 96.9 3.0 47.20 47.70 48.40 49.50
18 1.300 87.1 124 53.30 54.60 55.10 55.30
19 1.440 90.9 8.8 46.20 47.50 48.10 48.40
20 4.040 92.2 7 46.30 47.60 51.30 51.80

The display of the individual rates of change in Figure 1.9 shows three individu-
als “improving” considerably faster than the others. The most complete descrip-
tive view is given by a plot of the fitted growth curves which is shown in Figure
1.6. That plot is used to illustrate the high stability of individual differences
among these individuals (below estimate of -y is .826). The observed correlation
between X, and & is —0.188; the corresponding scatterplot is given in Figure
1.10.
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FIG. 1.9. Graphical description of individual growth rates for ramus
data: (a) stem-and-leaf display; (b) boxplot.
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FIG. 1.10. Scatterplot of empirical rate vs. observed initial status for
ramus data.

Estimation and inferences for model parameters obtained from the maximum-
likelihood estimation and bootstrap resampling procedures are shown in Table
1.17. Of note is the high estimated reliability of the rate of change; the standard
error of measurement for an individual rate is .39. But even with considerable
accuracy in assessing individual change, with only a small number of cases the
between-person moments (variance components, correlations) have considerable
uncertainty as can be seen from the rather wide confidence intervals.

Other quantities that can be estimated from the growth curve modeling in-
clude the reliabilities of the observed measures at each of the times of observa-
tion. For these ramus data the reliability estimates are: {.970, .969, .971, .975}.
Bootstrap standard errors for these estimates are between .01 and .015.

TABLE 1.17
Parameter and Variance Component Estimation
for Ramus Data

Estimate of Point s.e. 90% C/
Median(e) 1.48 14 (1.30, 1.80)
™ 1.85 .252 (1.474, 2.298)
o2 1.203 .500 (.336, 1.971)
pl(6) .886 .086 (.725, 928)
Pocia) —.196 .168 (—.439, .098)
¥ .826 .065 (.668, .879)
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Path Analysis Controls

The analyses briefly described above do provide some information about
change. Contrast those results with a standard path analysis of these 4-wave data
using standard multiple regression methods shown in Figure 1.11. Using all
plausible “causal paths”, values of the path coefficients are shown; only the
coefficients for the lag-1 paths are statistically significant. (Refitting using just
the significant paths changes little.) The real question is, What in the world does

this analysis reveal about change (or any conceivable longitudinal research ques-
tion)?

North Carolina Data

The second data analysis example is real education data previously analyzed
using the maximum-likelihood estimates in TIMEPATH in an excellent expository
paper by Williamson et al. (1991). Descriptions of the individual trajectories and
rates of change would use the same displays as in the Ramus data. Again, these
data conform well to the straight-line growth model; the median value of R2 for
the 277 individual fits is .963. A brief numerical description of the individual
rates of change is

Rate of Change
N MEAN MEDIAN STDEV MIN MAX Q1 a3
6 277 36.45 36.39 7.472 9.71 64.24 31.46 41.02

One reason to examine this data example is the existence of the exogenous
variable, the verbal ability measure, which allows questions about correlates of
change to be addressed. The initial descriptive information would be the correla-
tion between 8 and W, which is .624, and the corresponding scatterplot is shown
in Figure 1.12.

.878 ;
X; > Xy [ x4

\_—.3&8__/

FIG. 1.11. Four-wave path analysis results for ramus data.
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FIG. 1.12. Scatterplot of observed rate of change vs. background abil-
ity measure for North Carolina data.

The parameter estimation summarized in Table 1.18 reveals that these data
permit rather accurate assessment of rates of change; the reliability estimate is
high, and the standard error of measurement of 8 is 3.1. Of considerable note in
these data is the large positive value of .651 for the estimate of the correlation
between true rate of change and true initial status. Also of note is that the
estimates show a strong relation with W, the verbal ability measure. (Entries in
Table 1.18 correspond to point estimates reported in Table 3 of Williamson et al.,
1991). Note that with the larger sample of 277 cases, greater accuracy (smaller
standard errors, narrower confidence intervals) for the estimation of the between-
person moments is obtained.

TABLE 1.18
Parameter and Variance Component Estimation
for North Carolina Data

Estimate of Point s.e. 90% Cl
Mo 36.45 448 {35.72, 37.19)
Median(6) 36.39 .327 (35.86, 36.95)
a2 46.23 5.95 (36.67, 56.12)
() .828 .019 (.792, .854)
Poe(1) 651 .080 (.513, .809)
¥ 721 0174 (.689, .746)
Bow .336 .028 (.291, .382)
Pow .686 .045 (.608, .754)




3. WHAT CAN BE DONE WITH (MEAGER) TIME-1,
TIME-2 DATA?

The data used for illustration here consist of observations on 40 cases, and shown
below are the values for observations at time 1, X 1, at time 2, X,, and also values
for an exogenous background variable W. For purposes of exposition the longi-
tudinal observations might be reading achievement scores of elementary school
children, and the background variable W might be some measure of home envi-
ronment, leading to obvious substantive questions such as, Do students with
“better” home environments (books in the home, etc.) make better progress or
improvement in reading?

Some Descriptive Analyses of Individual Change
with Two Observations

The estimate of the amount of change for each individual is simply the observed
amount of improvement: D = X, — X,. The display of the data given in Table
1.19 has this difference score appended in the first column. Descriptive analyses
of D, such as those illustrated below have value, and are essentially the best one

TABLE 1.19
Data and Difference Scores for Two-Wave Example
Case D X, X, w Case D X, X, w
1 2193 3752 5945 15.97 21 30.90 4557 76.47 15.88
2 16.62 4513 61.65 15.38 22 31.36 50.79 82.14 18.25
3 31.00 3515 66.15 11.48 23 4.96 36,56 4152 10.15
4 20.44 4413 64.57 16.89 24 18.02 39.48 57.50 9.46
5 1775 5274 7049 19.18 25 2636 3834 64.69 15.81
6 33.86 3043 64.29 11.82 26 21.72 32,57 5429 11.60
7 2218 4586 68.04 15.33 27 39.74 4418 8392 14.08
8 1495 41.09 56.04 13.21 28 2497 3279 57.76 12.19
9 10.80 4560 56.39 13.09 29 2491 38.61 63.52 14.07
10 11.79 4164 53.43 10.32 30 446 54.90 5936 16.68
1 212 4055 4267 10.26 31 16.79 3742 5422 15.07
12 1771 4360 6130 15.60 32 11561 4319 5471 13.94
13 16.49 40.33 56.82 13.90 33 1879 57.07 7586 20.40
14 19.561 3647 55.98 13.53 34 2457 5240 7697 16.00
15 2233 5094 7327 14.45 35 6.74 5335 60.09 17.47
16 10.08 56.33 66.47 20.16 36 1656 47.21 63.77 17.30
17 24.16 54.82 78.98 16.11 37 4262 3753 80.05 15.86
18 2297 46.23 69.21 15.06 38 21.08 47.89 6897 18.95
19 39.50 4034 79.84 18.33 39 23.16 5879 8195 18.90
20 21.81 3978 6159 13.77 40 269 3998 4267 13.79
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FIG. 1.13. Graphical -description of individual difference scores for
two-wave example data: (a) stem-and-leaf display; (b) boxplot.

can do with these limited longitudinal data. If the individual history is merely
two observations, the difference score is essentially (with unit time) the slope of
the straight-line growth curve, and fitting a line to two points can yield disap-
pointing statistical or psychometric properties. But the core problem is the mea-
ger data, not the summary. These limitations and statistical difficulties do pre-
clude the estimation of variance components, etc., as was done in the two
previous examples. Nonetheless, we can at least do simple descriptive summa-
ries that address some of the longitudinal research questions. The data analysis
setting is certainly not as hopeless as might be concluded from the (deliberate)
overstatement in Motto 1 of Rogosa et al. (1982): “Two-waves are better than
one, but not much.”

Analyses of Individual Change

Below we have both a quantitative summary of the observed data and the
amount of change; graphical summaries of the individual change are shown in
Figure 1.13. For the “average” individual there was notable improvement of
about 20 points. But clearly there also appear to be large individual differences in
change, with some individuals gaining more than 40 points and others less than 5

points.

Observed Data

N MEAN MEDIAN STDEV MIN MAX Q1 Q3
X, 40 43.93 43.40 7.29 30.43 58.79 38.40 50.07
X, 40 64.18 ©63.65 10.92 41.52 83.92 56.50 72.57
W 40 14.992 15.200 2.803 9.462 20.399 13.288 16.837

Change
N MEAN MEDIAN STDEV MIN MAX (e} Q3
D 40 20.25 20.76 9.7 2.12 42.52 15.34 24.82
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One question that follows is whether these individual differences are linked to
quantities such as initial status or the exogenous variable. The correlation be-
tween observed change and observed initial status (correlation between D and
X,) is —.199; this estimate is biased with a somewhat complicated form (as
discussed in, for example, Rogosa, et al. 1982, Equation 11). The corresponding
scatterplot is shown in Figure 1.14.

To describe relations between change and exogenous variables, start with the
scatterplot shown in Figure 1.15. The sample correlation between W and D is
0.158, and the corresponding regression analysis for predicting individual
change from W yields:

The regressionequationisD=12.0+ 0.549 W
Predictor Coef Stdev t-ratio

p
Constant 12.015 8.460 1.42 0.164
W 0.5488 0.5549 0.99 0.329
s=9.713 R-sq=2.5% R-sqCadj) =10.0%

Apparently, there is little or no relation between individual change and the
background variable W. Observed correlation is near zero, with test statistic
of .99.

More generally, even with the meager two-wave data, valuable descriptions
based on individual change can be built up to address more complex research
questions and settings. For example, in two-group (or more) experimental stud-
ies, comparison of the difference scores across the experimental groups is equiv-
alent to repeated measures analysis of variance. A thorough exposition of this
equivalence to repeated measures ANOVA for the two-group, pre-test, post-test

40 —
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FIG. 1.14. Scatterplot of observed change vs. observed initial status
for two-wave example data.
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FIG. 1.15. Scatterplot of observed change vs. background variable for
two-wave example data.

data structure is given in Brogan and Kutner (1980). Similar strategies are useful
in nonexperimental, comparative settings. For quasiexperiments, a question that
can and should be addressed in these nonexperimental studies is, Which group
changed more (or declined less)? Of course, causal attribution (e.g., to the
program or intervention) cannot be made, and, most important, attempts at
statistical adjustments, explicit or implicit, to draw an “as if by experiment”
conclusion are doomed. The difference score (or a measure of change obtained
from richer data) is not the core problem. Approaches that start with assessments
of individual change are far better than standard ANcova methods, or more
esoteric adjustment procedures such as standardized change scores and the like.

Artificial Data with Known Structure

These exemplar time-1, time-2 data were produced from an underlying structure
with known parameter values. The 40 individual cases were drawn from a
population with specified characteristics (methods for constructing such artificial
data are described in Question 5). True change, A, has a Uniform distribution
with lower and upper values of 4 and 36; thus true change has mean 20 and
variance 85.333. True status at time 1, §;, has population mean 45 and variance
53.33 and for time 2 &, has population mean 65 and variance 96.0. Measurement
error has mean 0 and variance 10 at each time point. Consequently, in the
population the reliability of change, D, is .810, and the reliabilities of X, and of
X, are .842 and .906, respectively. The correlation between true change and true
initial status is —.316. The exogenous variable W was constructed to have no
association with true change; p,y = 0.
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Comparisons with Traditional Measurement of
Change Analyses

The starting point for traditional analyses in the past measurement of change
literature is not the description of individual change, but instead, the description
of between-variable relations, most notably the time-2, time-1 scatterplot. The
time-2 versus time-1 (X, versus X,) scatterplot shown in Figure 1.16 has cor-
relation .491. Also examined would be the between-variable relations with the
exogenous variable in Figure 1.16, which show noticeable association between
W and the longitudinal observations. However, Rogosa and Wiliett (1985b) have
demonstrated that such cross-sectional associations do not provide useful infor-
mation about correlates of change or progress. The correlation matrix provides
the usual summary of these between-variable relations:

X1 X2
X,
X, 0.491
W 0.716 0.619

It is unclear what is revealed about change from these between-variable relations.

To investigate the importance of the exogenous variable, it would be typical to
carry out a regression analysis predicting X, from X, and W. The results from this
regression, shown below, preduce a highly significant coefficient for W (z-value
2.98) and thus would lead to exactly the wrong conclusion about W—even
though in the structure of the data there is zero correlation between individual

X, .o
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FIG. 1.16. Traditional scatterplots for two-wave example data ar-
ranged as time 2 vs. time 1 (top) and background variable vs. time 1
and time 2 (bottom).
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change and W, the measurement of change analysis would flag W as an important
predictor of change!

The regression equationis X, =25.7+0.145X, +2.14UW

Predictor Coef Stdev t-ratio P
Constant 25.690 8.821 2.91 0.006
X, 0.1447 0.2759 0.52 0.603
W 2.1431 0.7181 2.98 0.005
s=8.770 R-sq = 38.8% R-sqCadj) = 35.5%

Similarly, construction of the standard residual change score (see Myth 6) yields
a correlation with W of .307 (double the sample correlation between W and D).

4. IS REGRESSION TOWARD THE MEAN REALLY AN
IMPEDIMENT TO ASSESSING CHANGE?

The answer is no, but the material in Myth 5 would benefit from some augmenta-
tion. In that and other treatments of regression toward the mean, my focus has
been on the importance of clear, explicit definition in the common references to
“regression toward the mean” and then showing the consequences of that defini-
tion. My previous discussion has followed the literature in examining time-1,
time-2 regression toward the mean, either in terms of perfectly measured &(z;) or
in terms of the fallible X;. And while those facts (reviewed below) are useful, the
important additional message is that discussion of time-1, time-2 regression
toward the mean, to some extent, misses the point—interest in assessing change
should be on the estimate of change, such as the estimate of the amount of
change A, or of the rate of change 6,,.

The conventional definition of time-1, time-2 regression toward the mean in
standard deviation units is uninteresting, whether it be in terms of X; and X, or in
terms of &(¢,) and &(t,), the latter in Equation 1.3. As is shown there, the
condition for regression toward the mean to hold is for the time-1, time-2 correla-
tion to be less than 1. This tautology (discussed following Equation 1.3) has the
following derivation: starting with Equation 1.3, substitute E[&(¢,) | &@2y) = C1 =
Peay t Pec ey [og, Ol (C — Py and then simplify to obtain the condi-
ton Py ye,y < 1

One illustration that this statement of regression toward the mean is not
important is provided by the sample collection of 15 growth curves depicted in
Figure 1.17. This set of individual trajectories has values that satisfy the defini-
tion of time-1, time-2 regression toward the mean. Using, say, ¢, = 3, , = 7, the
population correlation pgas)e7y = .894, and thus Equation 1.3 is satisfied—
regression toward the mean “holds.” Yet the correlation between £(3) and the
amount (or rate) of change is .707, which implies that rates of improvement for
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FIG. 1.17. Collection of 15 straight-line growth trajectories for regres-
sion toward the mean illustration.

those high on £(3) are larger than the rates of improvement for those low on £(3).
Intuitively, this is just the opposite of what is meant by the phrase regression
toward the mean.

For illustration, values for £(3), £(7) and the corresponding fallible observa-
tions, the X-values are shown in Table 1.20. The population means at times 3 and
7 are 40 and 60, respectively. (The X-values are constructed by adding measure-

TABLE 1.20
True and Fallible Two-Wave Data for Regression
Toward the Mean Example

&values X-values

=3 t=7 =3 t=7

1 41.93 57.27 40.11 54.88
2 27.02 36.49 29.05 40.23
3 42.37 70.52 41.15 73.72
4 47.82 73.36 52.09 72.19
5 41.02 54.89 41.97 62.37
6 51.06 86.68 50.67 82.19
7 44.81 63.33 47.36 69.74
8 47.38 80.69 48.70 83.13
9 30.68 46.52 35.04 51.35
10 31.93 41.15 31.24 49.51
11 42.53 76.04 51.05 69.02
12 45.50 61.40 51.97 53.52
13 35.43 44,59 29.40 31.12
14 40.91 75.20 40.05 78.89
15 48.28 77.50 56.36 77.66
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ment error with variance 25 to the £-values yielding reliabilities of .631 for ¢ = 3
and .895 for ¢ = 7.) For the &-values, 13 of the 15 cases are further from the
mean at 7 = 7 than at ¢t = 3; only cases 7 and 12 are closer to the mean at 7 = 7
than at ¢ = 3. For example, individual 3 is 2.4 units from the mean at z = 3 and
10.5 units away at ¢ = 7.

The more appropriate statement of time-1, time-2 regression toward the mean
in terms of the actual metric is given in Equation 1.4 and is equivalent to Peene <
0 or Berer,y < 1. This condition is simply a statement about the collection of
individual growth curves and has no relevance to the ability to assess change.

Regression in Terms of the Estimate of Change

Consideration of time-1, time-2 regression toward the mean had led me previ-
ously to believe that regressionftoward the mean was irrelevant to assessing
change and was a concept/concern best ignored and forgotten. But that’s not
fully correct. The important point that is missed in presenting the facts above is
that the quantity of interest is the estimate of change: of the amount of change A
or the rate of change 6. This is where there is some constructive role for talking
in terms of a regression toward the mean. The time-2 observation is not a
replication of the time-1 observation whenever there is systematic individual
change. Where regression toward the mean is a relevant concept is that an
estimate of A or the rate of change 6 from fallible data has more variability than if
measurement were perfect; that is variance(§) > variance(0). Thus an extreme
value of é,, is likely to be larger than what would be obtained if measurement
were perfect. This concern is a good justification for empirical Bayes estimates
of individual growth rates (e.g., Fearn, 1975). For this concern about the error in
ép, the traditional and sensible warning about selecting extremes based on falli-
ble scores still pertains—i.e., selecting students with observed low rates of
change for an intervention runs the risk of overstating the value of the interven-
tion as their actual rates of improvement are likely greater than that observed.

5. HOW CAN LONGITUDINAL DATA EXAMPLES WITH
KNOWN STRUCTURE BE CREATED?

To create examples of longitudinal panel data with known structure, we can use
the basic relations and properties of collections of growth curves. The procedures
illustrated here are for data based on underlying straight-line growth curves.

Simulation Procedure

Start by choosing the center for the time metric by specifying ° where ° =
~ O/ cg. Then for the parameters of the straight-line growth model &0 =
£(°) + 0,(t — 1°) specify the parameter distributions over individuals of the
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uncorrelated random variables £(#°) and 0 (e.g., each distribution Gaussian or
each distribution Uniform) to generate these parameter values for each p. By
doing so, the scale for the time metric k = 0./ is specified. By then stating
the discrete values of the times of observation {#} = t,, . . . , t, we then have
values for the §,(;) for p = 1, ..., n. The exogenous characteristic W is
generated with specified mean and variance, specifying the two correlations Pwece)
and py (under the constraint (pyg)? + (pwe)? = 1). The final step is to create
the fallible observables by the addition of measurement error to the €,(t;) accord-
ing to the classical test theory model: X(t) = &) + g forp=1,...,n

Consequences for Second Moments

The choices of the values above determine the population values of the famil-
iar second moments of &,(1) or X (1) for the ‘artificial data. In practice, these
values of these quantities—variances, correlations, etc.—are often chosen first
(say to correspond to values familiar from empirical research or common sense),
and then solutions (explicitly or by trial and error) for the corresponding values
for the simulation procedure above are obtained. The relations that provide
values of these second moments for the €,(t,) are
variance

Djams 2 2
Ug(,) = U§(1°) + ((t - to)/K)zclg(,n),
covariance (also yields correlation, using above)
_ 2 2
Oty = (t, — )t — )og + Ty
correlation between change and initial status

_ t—1r
Poty = Wz ¥ (7 = P2

correlation with exogenous variable, W

_ (= C)pwe + KPwe(r)
Pwe k2 + (¢ + Py 12

Technical Specifications for Exhibit 1

In terms of the model parameters, the values for the artificial data in Exhibit 1
are ©° = 2; o) = 5.333; cg(,o) = 48; for 6 ~ U[1, 9], &t°) ~ U[38, 62].
Population mean rate of change is 5, and values of the population correlation
coefficients among the £(z;) for observation times #;, = 1, 7, = 3, ty = 5 are
Penedy = -80, Peiyesy = 447, Peayecsy = -894. Furthermore, for the fallible
measure X with var(e) = 10, the population correlations are Pxcyxsy = -674,

Pxyxcs) = 391, pxayxsy = -781.
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