Statistics 222, Education 351A Autumn 2020

Statistical Methods for Longitudinal Research

Autumn 2020 Remote Asynchronous Instruction

David Rogosa Sequoia 224, rag $\{\mathrm{AT}\}$ stanford $\{\mathrm{DOT}\}$ edu
Course web page: http://rogosateaching.com/stat222//
To see full course materials from Autumn 2018 go here
Course Welcome and Logistics (first day stuff, to be posted in August, call it Week0)
Lecture slides, week 0 (pdf) Audio companion, week 0
For recreation of in-classroom experience, linked below are youtube versions of the music I play
before starting lecture and after lecture concludes. Some may wish to reverse that ordering.

Registrar's information
STATS 222 (Same as EDUC 351A): Statistical Methods for Longitudinal Research Units: 2
Grading Basis: Letter or Credit/No Credit
Course Description:
STATS 222: Statistical Methods for Longitudinal Research (EDUC 351A)
Research designs and statistical procedures for time-ordered (repeated-measures) data.
The analysis of longitudinal panel data is central to empirical research on learning, development, aging, and the effects of interventions. Topics include: measurement of change, growth curve models, analysis of durations including survival analysis,
experimental and non-experimental group comparisons, reciprocal effects, stability.
See http://rogosateaching.com/stat222/. Prerequisite: intermediate statistical methods
Terms: Aut | Units: 2 | Grading: Letter or Credit/No Credit
Instructors: Rogosa, D. (PI)

Preliminary Course Outline

Week 1. Course Overview, Longitudinal Research; Analyses of Individual Histories and Growth Trajectories
Week 2. Introduction to Data Analysis Methods for assessing Individual Change for Collections of Growth Curves (mixed-effects models)
Week 3. Analysis of Collections of growth curves: linear, generalized linear and non-linear mixed-effects models
Week 4. Special case of time-1, time-2 data; Traditional measurement of change for individuals and group comparisons
Week 5. Assessing Group Growth and Comparing Treatments: Traditional Repeated Measures Analysis of Variance and Linear Mixed-effects Models
Week 6. Comparing group growth continued: Power calculations, Cohort Designs, Cross-over Designs, Methods for missing data, Observational studies.
Week 7. Analysis of Durations: Introduction to Survival Analysis and Event History Analysis
Weeks 8-9. Further topics in analysis of durations: Diagnostics and model modification; Interval censoring, Time-dependence, Recurrent Events, Frailty
Models, Behavioral Observations and Series of Events (renewal processes)
Dead Week. Assorted Special Topics (enrichment) and Overflow (weeks 1-8): Assessments of Stability (including Tracking), Reciprocal Effects, (mis)Applications of Structural Equation Models, Longitudinal Network Analysis

Texts and Resources for Course Content

1. Garrett M. Fitzmaurice Nan M. Laird James H. Ware Applied Longitudinal Analysis (Wiley Series in Probability and Statistics; 2nd ed 2011)

Text Website second edition website Text lecture slides
2. Judith D. Singer and John B. Willett . Applied Longitudinal Data Analysis: Modeling Change and Event Occurrence New York: Oxford University Press, March, 2003.
Text web page Text data examples at UCLA IDRE Powerpoint presentations good gentle intro to modelling collections of growth curves (and survival analysis) is Willett and Singer (1998).
3. Douglas M. Bates. lme4: Mixed-effects modeling with R February 17, 2010 Springer (chapters). A merged version of Bates book: 1 me4: Mixed-effects modeling with R January 11, 2010 has been refound
Manual for R-package lme4 and mlmRev, Bates-Pinheiro book datasets.
Additional Doug Bates materials. Collection of all Doug Bates lme4 talks Mixed models in R using the lme4 package Part 2: Longitudinal data, modeling interactions Douglas Bates 8th International Amsterdam Conference on Multilevel Analysis 2011-03-16 another version
Original Bates-Pinheiro text (2000). Mixed-Effects Models in S and S-PLUS (Stanford access). Appendix C has non-linear regression models. Fitting linear mixed-effects models using lme4, Journal of Statistical Software Douglas Bates Martin Machler Ben Bolker. Technical topics: Mixed models in R using the lme4 package Part 4: Theory of linear mixed models
4. A handbook of statistical analyses using R (second edition). Brian Everitt, Torsten Hothorn CRC Press, Index of book chapters Stanford access Longitudinal chapters: Chap11 Chap12 Chap13. Data sets etc Package 'HSAUR2' August 2014, Title A Handbook of Statistical Analyses Using R (2nd Edition)
There is now a third edition of HSAUR, but full text not yet available in crcnetbase.com. CRAN HSAUR3 page with Vignettes (chapter pieces) and data in reference manual
5. Peter Diggle , Patrick Heagerty, Kung-Yee Liang, Scott Zeger. Analysis of Longitudinal Data 2nd Ed, 2002

Amazon page Peter Diggle home page Book data sets
A Short Course in Longitudinal Data Analysis Peter J Diggle, Nicola Reeve, Michelle Stanton (School of Health and Medicine, Lancaster University), June 2011 earlier version associated exercises: Lab 1 Lab2 Lab3
6. Longitudinal and Panel Data: Analysis and Applications for the Social Sciences by Edward W. Frees (2004). Full book available and book data and
same rate of change. For purposes here use the sleepstudy data to fit a mixed-model with all individuals having the same time gradient. Compare to the model in class allowing slopes and levels to differ.

Solution for Review Question 1
2. Orange tree extras. Take the fixed effects from the orange tree nlmer model, " ml " in the class materials, as the parameters of the "average" growth curve for this group of trees. Plot that logistic growth curve (either use a formula for logistic or the growfit package has a simple function). Compare the fixed effects from nlmer to the results from nls for these data. More challenging Try to superimpose the group logistic curve (above) onto the plots of the individual tree trajectories (you may want to refer to the plots week1 Aids data).

Solution for Review Question 2
3. Asymptotic regression, SSasymp slide (pdf p. 5 of Bates slides, Nonlinear mixed models talk linked in Week 3, Topic 4). Data are from NeterWasserman text in file CH13TA04.txt. The outcome variable is manufacturing relative efficiency (RelEff) over 90 weeks duration for two different locations. Plot the RelEff outcome against week for the two locations. Use the SSasymp function for a nlmer fit (or nls if needed) to see whether the asymptote differs for the two locations.

Solution for Review Question 3
4. Quadratic (polynomial) Trends. The book by Mirman resource item 7 Growth Curve Analysis and Visualization Using R not surprisingly has some good data examples (primarily psychological learning experiments). Here we use the Chapter 3 data set (sec 3.4) Word Learning. Data at http://www.danmirman.org/gca/WordLearnEx.txt. Use the subset TP == Low. How many subjects in that subset? How many observations on each? Accuracy is the outcome measure, the time ordered measure is Block (see Fig 3.7). Investigate a linear trend versus a quadratic trend using mixed effect models.

Solution for Review Question 4

WEEK 3 Exercises

1. Teen age drinking. [note: data location updated 10/12/17]

The UCLA data archive has a comma delimited file (access by
read.table("https://stats.idre.ucla.edu/stat/r/examples/alda/data/alcoholl_pp.txt", header=T, sep=",") .
Measurements on 82 adolescents (initial age 14) included 3 time-ordered observations on alcohol use and two background (exogenous) variables: dichotomous coa (child of an alcoholic) and measured variable peer (alcohol use by target's peers). Describe the collection of time trajectories in alcohol use. Fit an unconditional mixed model to this collection of time-trajectories and obtain interval estimates for the random and fixed effects. Show a plot for the random effects (subjects) and interpret the fixed effects. Now consider the two exogenous variables. Using conditional models, identify the best fitting model. Interpret the fixed effects for the best fitting model.
2. Vocabulary learning data from test results on file in the Records Office of the Laboratory School of the University of Chicago. Source D R Bock, MSMBR. The data consist of scores, obtained from a cohort of pupils at the eigth through eleventh gade level on alternative forms of the vocabulary section of the Cooperative Reading Tests." There are 64 students in all, 36 male, 28 female (ordered) each with four equally spaced observations (test scores). Wide form of these data are in BOCKwide.dat and I kindly also made a long-form version BOCKlong.dat. Construct the usual collection of individual trajectory displays (either connect-the-dots or compare to a straight-line). Obtain the means (over persons) and plot the group growth curve. Does there appear to be curvature (i.e. deceleration in vocabulary skill growth)?
a. Construct an lmer model with the individual growth curve a quadratic function of grade (year), most convenient to use uncorrelated predictors grade mean(grade) and (grade - mean (grade) $)^{\wedge} 2$. Fit the lmer model and interpret the fixed and random effects you obtain. Compare the results with a lmer model in which the individual trajectories are straight-line. Use the anova model comparison functionality in R (e.g. anova(modLin, modQuad) to test whether the quadratic function for individual growth produces a better model fit.
b. Investigate (via lmer model) gender differences (isMale) in vocabulary growth. Fit appropriate lmer models and interpret results,
3. Data on the growth of chicks on different diets. Hand and Crowder (1996), Table A.2, p. 172 Hand, D. and Crowder, M. (1996), Practical Longitudinal Data Analysis, Chapman and Hall, London. The dataset is available as a .R file; easiest to bring this page down to your machine and then load into your R-session (or try to load remotely). Here we consider the 20 chicks on Diet 1 . (select these). Construct the plots analogous to those for the class example Orange trees: individual chicks frame-by-frame and all chicks on one plot. Fit a nlmer model that allows final weight (asymptote) to differ over chicks (other params fixed). Use ranef (individual estimates) to identify the largest asymptote value and smallest value. Plot the "average" growth curve under diet 1 . Compare that nlmer model with a model that does not allow asymptotes to differ. What is your conclusion. Also compare with a nls model that ignores repeated measurements structure (i.e. ignores individual chicks). Compare the average growth curves.

Week 4. Special case of time-1, time-2 data; Traditional measurement of change and more

Lecture Topics

1. Properties of Collections of Growth Curves. class handout
2. Time-1, time-2 data. (paired data)

The R-package PairedData has some interesting plots and statistical summaries for "before and after" data; here is a McNeil plot for Xi.1, Xi. 5 in data example
Paired dichotomous data, McNemar's test (in R, menemar.test \{stats\}), Agresti (2nd ed) sec 10.1
Also see R-package PropCIs Prime Minister example
3. Issues in the Measurement of Change. Class lecture covers Myths 1-6+.

Slides from Myths talk . Class Handout, Companion for Myths talk
4. Examples for Exogenous Variables and Correlates of Change (use of lagged dependent variables)

Time-1,time-2 data analysis examples Measurement of change: time-1,time-2 data
data example for handout scan of regression handout ascii version of data analysis handout
Extra material for Correlates and predictors of change: time-1,time-2 data
Rogosa R-session to replicate handout, demonstrate wide-to-long data set conversion, and descriptive fitting of individual growth curves. Some useful
plots from Rogosa R-session
Technical results: Section 3.2.2 esp Equation 27 in Rogosa, D. R., \& Willett, J. B. (1985). Understanding correlates of change by modeling individual
differences in growth. Psychometrika, 50, 203-228. Talk slides
5. Comparing groups on time-1, time-2 measurements: repeated measures anova vs lmer OR the t-test

Comparative Analyses of Pretest-Posttest Research Designs, Donna R. Brogan; Michael H. Kutner, The American Statistician, Vol. 34, No. 4. (Nov.,
1980), pp. 229-232. JSTOR link
urea synthesis, BK data data, long-form
BK plots (by group) BK overview

Additional stuff
BK repeated measures analysis pdf version
Stat 141 analysis
archival example analyses. SAS and minitab
Background Readings and Resources
Myths Chapter. Rogosa, D. R. (1995). Myths and methods: "Myths about longitudinal research," plus supplemental questions. In The analysis of change,
J. M. Gottman, Ed. Hillsdale, New Jersey: Lawrence Erlbaum Associates, 3-65.

Myths Talk. Rogosa, D. R. (1983)
More stuff (if you don't like the ways I said it)
I noticed John Gottman did a pub rewriting the myths: Journal of Consulting and Clinical Psychology 1993, Vol. 61, No. 6,907-910 The Analysis of Change: Issues, Fallacies, and New Ideas
Also John Willett did a rewrite of the Myths 'cuz I didn't want to reprint it again (or write a new version): Questions and Answers in the Measurement of Change REVIEW OF RESEARCH IN EDUCATION 1988 15: 345
Reliability Coefficients: Background info. Short primer on test reliability. Informal exposition in Shoe Shopping and the Reliability Coefficient extensive technical material in Chap 7 Revelle text
A growth curve approach to the measurement of change. Rogosa, David; Brandt, David; Zimowski, Michele Psychological Bulletin. 1982 Nov Vol 92(3) 726-748 APA record direct link
Rogosa, D. R., \& Willett, J. B. (1985). Understanding correlates of change by modeling individual differences in growth. Psychometrika, 50, 203-228.
available from John Willet's pub page
Demonstrating the Reliability of the Difference Score in the Measurement of Change. David R. Rogosa; John B. Willett Journal of Educational Measurement, Vol. 20, No. 4. (Winter, 1983), pp. 335-343. Jstor
Maris, Eric. (1998). Covariance Adjustment Versus Gain Scores--Revisited. Psychological Methods, 3(3) 309-327. apa link
A good R-primer on repeated measures (a lots else). Notes on the use of R for psychology experiments and questionnaires Jonathan Baron, Yuelin Li. Another version
Multilevel package has behavioral scienes applications including estimates of within-group agreement, and routines using random group resampling (RGR) to detect group effects.
More repeated measures resources: Background primer on analysis of variance (with R); see sections 6.8, 6.9 of Notes on the use of R for psychology experiments and questionnaires Jonathan Baron, Yuelin Li. Pdf version The ez package provides extended anova capabities. Examples (blog notes) :
Repeated measures ANOVA with R (functions and tutorials) Repeated Measures ANOVA using \underline{R} Obtaining the same ANOVA results in R as in SPSS - the difficulties with Type II and Type III sums of squares

Application publications, time-1, time-2 Experimental Group Comparisons:
a. Mere Visual Perception of Other People's Disease Symptoms Facilitates a More Aggressive Immune Response Psychological Science, April 2010 Prepost data and difference scores (see Table 1)
b. Guns and testosterone. Guns Up Testosterone, Male Aggression

Guns, Testosterone, and Aggression: An Experimental Test of a Mediational Hypothesis Klinesmith, Jennifer; Kasser, Tim; McAndrew, Francis T,
Psychological Science. Vol 17(7), Jul 2006, pp. 568-571.

WEEK 4 Review Questions

1. Time1-time2 regressions; Class example

Repeat the handout demonstration regressions using the fallible measures (the X's) from the bottom half of the linked data page. The X's are simply error-in-variable versions of the Xi's: $\mathrm{X}=\mathrm{Xi}+$ error, with error having mean 0 and variance 10 . Compare 5 -number summaries for the amount of change from the earliest time " 1 " to the final observation " 5 " using the "Xi" measurements (upper frame) and the fallible " X " observations (lower frame).

Solution for Review Question 1
2. (more challenging). Use mvrnorm to construct a second artificial data example ($\mathrm{n}=100$) mirroring the week 4 myths data class handout BUT with the correlation between true individual rate of change and W set to .7 instead of 0 . Carry out the corresponding regression demonstration.

Solution for Review Question 2

3. Reliability versus precision demonstration

Consider a population with true change between time1 and time2 distributed Uniform [99,101] and measurement error Uniform [-1, 1]. If you used discrete Uniform in this construction then you could say measurement of change is accurate to 1 part in a hundred.
Calculate the reliability of the difference score.
Also try error Uniform [-2,2], accuracy one part in 50 .
A similar demonstration can be found in my Shoe Shopping and the Reliability Coefficient

Solution for Review Question 3

4. Revisit Brogan-Kutner data analysis.
a. Demonstrate the Brogan-Kutner Section 5 equivalences (from paper, shown in class) for repeated measures anova and/or BK lmer analyses.
b. Is amount of gain/decline related to initial status? For the 8 new procedure patients and for the 13 old procedure patients, seperately, estimate the correlation between change and initial status and obtain a confidence interval if possible.
c. Analysis of Covariance. For the Brogan-Kutner data carry out an analysis of covariance (using premeasure as covariate) for the relative effectiveness of the surgery methods. Compare with class analyses.
Slides 203-204 in the Laird-Ware text materials purport to demonstrate that analysis of covariance produces a more precise treatment effect estimate than difference scores (repeated measures anova). What very limiting assumption is slipped into their analysis? Can you create a counter-example to their assertion/proof?

Solution for Review Question 4

part c. Solution Notes on the ALA (Laird-Ware) assertion
5. Repeat Brogan-Kutner Imer analyses from lecture. Just another repitition of BK class handout.

Use lmer (or lme) to determine the comparative efficacy of the surgical methods on liver function. Investigate whether a model allowing for pretest differences is helpful.

WEEK 4 Exercises

1. Captopril and Blood pressure

The file captopril.dat contains the data shown in Section 2.2 of Verbeke, Introduction to Longitudinal Data Analysis, slides. Captopril is an angiotensinconverting enzyme inhibitor (ACE inhibitor) used for the treatment of hypertension.
a. Smart First Year Student analyses. Use the before and after Spb measurements to examine the improvement (i.e. decrease) in blood pressure. Obtain a five-number summary for observed improvement. What is the correlation between change and initial blood pressure measurement? Obtain a confidence interval for the correlation and show the corresponding scatterplot. What special challenges are present in this analysis?
b. Imer analyses. Try to obtain a good confidence interval for the amount of decline. Obtain a point and interval estimate for the correlation beween initial status and change in Spb .
2. Regression toward the mean? Galton's data on the heights of parents and their children

In the "HistData" or "psych" packages reside the "galton" dataset, the primordial regression toward mean example.
Description: Galton (1886) presented these data in a table, showing a cross-tabulation of 928 adult children born to 205 fathers and mothers, by their height and their mid-parent's height. A data frame with 928 observations on the following 2 variables. parent Mid Parent heights (in inches) child Child Height. Details: Female heights were adjusted by 1.08 to compensate for sex differences. (This was done in the original data set)
Consider "parent" as time1 data and "child" as time2 data and investigate whether these data indicate regression toward the mean according to either definition (metric or standardized)? Refer to Section 4 of the Myths chapter supplement (pagination 61-63) for an assessment of regression toward the mean (i.e. counting up number of subjects satisfying regression-toward-mean).
Aside: if you like odd plots, look at the sunflowerplot code in the docs for the galton data.
3. Paired and unpaired samples, continuous vs categorical measurements.

Let's use again the 40 subjects in the Review Question 1 " X " data.
a. Measured data. Take the time 1 and time 5 observations and obtain a 95% Confidence Interval for the amount of change. Compare the width of that interval with a confidence interval for the difference beween the time 5 and time 1 means if we were told a different group of 40 subjects was measured at each of the time points (data no longer paired).
b. Dichotomous data. Instead look at these data with the criterion that a score of 50 or above is a "PASS" and below that is "FAIL". Carry out McNemar's test for the paired dichotomous data, and obtain a 95% CI for the difference between dependent proportions. Compare that confidence interval with the "unpaired" version (different group of 40 subjects was measured at each of the time points) for independent proportions.
4. Beat the Blues from Chap 12 of HSAUR 2nd ed (resource \# 4).

Data in wide form: data("BtheB", package = "HSAUR2"). Chap. 12 describes the cognitive behavioural program and conducts various analyses. We will use the pretest and the two-month followup (additional followups have lots of missing data).
Investigate the effectiveness of Beat the Blues from these 2-wave data. Follow the various descriptive and modelling strategies shown in the BK class example.
5. From 2017 In the news

The 3 billion dollar (and counting) change score
(items below clipped from 2017 various press reports; we do not have the data)
Sage Therapeutics (NASDAQ:SAGE) surged in response to its announcement of positive results from a Phase 2 clinical trial assessing SAGE-217 for the treatment of adult patients with moderate-to-severe major depressive disorder (MDD), a Fast Track indication in the U.S.[2020 note: name, Zuranolone] It is estimated that there are around 16 million people in the United States with MDD.
SAGE-217, a neuroactive steroid, is next-generation GABA modulator. The GABA system, the major inhibitory signaling pathway in the brain and central nervous system (CNS), plays a key role in regulating CNS function. The company intends to advance the program into Phase 3 development.
The phase 2 looked at the effect of the positive allosteric modulator of the gamma-aminobutyric acid (GABA) receptor as compared to placebo in 89 patients with MDD.

About the Placebo-controlled Phase 2 trial of SAGE-217 in MDD:
In the randomized, double-blind, parallel-group, placebo-controlled trial, 89 eligible patients (with a minimum total score of 22 on the Hamilton Rating Scale for Depression) were stratified based on use of antidepressant treatment (current/stable or not treated/withdrawn >=30 days) and randomized in a 1:1 ratio to receive SAGE- 217 Capsules $(30 \mathrm{mg})(\mathrm{n}=45)$ or matching placebo $(\mathrm{n}=44)$. All doses of study drug were administered at night with food. The study consisted of a 14-day treatment period, and a 4-week follow-up period. The mean HAM-D total scores at baseline were 25.2 for the SAGE-217 group and 25.7 for the placebo group (overall range 22-33), representing patients with moderate to severe MDD. Approximately 90 percent of patients in each group completed the study.
Sage Therapeutics (NASDAQ: SAGE), a clinical-stage biopharmaceutical company developing novel medicines to treat life-altering central nervous system (CNS) disorders, today announced positive top-line results from the Phase 2, double-blind, placebo-controlled clinical trial of SAGE-217 in the treatment of 89 adult patients with moderate to severe major depressive disorder (MDD). In the trial, treatment for 14 days with SAGE-217 was associated with a statistically significant mean reduction in the Hamilton Rating Scale for Depression (HAM-D) 17-Item total score from baseline to Day 15 (the time of the primary endpoint) of 17.6 points for SAGE-217, compared to 10.7 for placebo ($p<0.0001$). Statistically significant improvements were observed in the HAM-D compared to placebo by the morning following the first dose through Week 4 and the effects of SAGE- 217 remained numerically greater than placebo through the end of follow-up at Week 6. At Day 15, 64 percent of patients who received SAGE-217 achieved remission, defined as a score of 7 or less on the HAM-D scale, compared with 23 percent of patients who received placebo ($p=0.0005$).
The 89 -subject study met its primary endpoint of a statistically significant average reduction in HAM-D score from baseline to day 15 ($p<0.0001$) versus placebo. HAM-D is a rating scale for depression. At day $15,64 \%$ of patients in the treatment group achieved remission compared to 23% for placebo ($\mathrm{p}=0.0005$).
There were a total of 89 patients recruited into the study who were either given SAGE-217 or a placebo compound. Patients were treated for a 14 day period and were then measured for clinical outcome using the Hamilton Rating Scale for Depression or HAM-D 17-item total score from baseline. It was shown that SAGE-217 achieved a statistically significant improvement over placebo according to the HAM-D scale. Patients that took SAGE-217 were shown to achieve a 17.6 point improvement at day 15 , compared to only a 10.7 point improvement for placebo. That meant that the drug achieved a statistically significant p -value of $\mathrm{p}<0.0001$. It was also noted that 64% of patients who took SAGE- 217 achieved MDD remission, compared to only 23% of placebo patients. MDD remission was classified as patients having a HAM-D score of 7 or less. This was the secondary endpoint of the study, which was also achieved.
Investigators saw a statistically significant improvement in SAGE-217 patients on a depression scale the day after the first dose. By the time the two-week treatment period came to an end, the mean score in the SAGE-217 arm had dropped 17.6 points, as compared to a 10.7 point decline in the control group. That seven-point placebo-adjusted improvement was enough for the trial to hit its primary endpoint with a p value of less than 0.0001 . The positive results continued beyond the end of the treatment period. The mean reduction on the depression scale in the treatment arm remained statistically superior to that of the placebo group two weeks after dosing stopped.

Questions

Consider the remission outcome (secondary) at day 15 (after 14 days of dose).
part a. For these time1-time2 dichotomous data (remission or not), explain what I did below to approximate the results reported by SAGE. part b. In week 4 (time1-time2 data) materials we introduced some more advanced capabilities for time1-time2 dichotomous data, such as menemar.test from base R and diffpropci.mp from package PropCIs. Comment on the applicability of those functions to the remission study and whether those are preferable here to the basic analysis in part a.

```
> sage2 = matrix(c(29, 10, 16, 34), nr=2) # remission counts for the two groups
> sage2
    [,1] [,2]
[1,]
> prop.test(sage2)
    2-sample test for equality of proportions with continuity correction
data: sage2
X-squared = 14.078, df = 1, p-value = 0.0001754
alternative hypothesis: two.sided
95 percent confidence interval:
0.2079003 0.6264431
sample estimates:
    prop 1 prop 2
0.6444444 0.2272727
> chisq.test(sage2)
    Pearson's Chi-squared test with Yates' continuity correction
data: sage2
X-squared = 14.078, df = 1, p-value = 0.0001754
```

part c. Consider the primary outcome, change in depression score (HAM-D).
In weeks 4 and 5 we conducted analysis of time1- time2 (and multiwave) outcome data for comparisons of experimental groups. For the SAGE study pretend we have long form data, with time coded 0 for baseline and 1 for Day 15 endpoint, and outcome HAM-D score at the timepoints $(0,1)$ and group indicating T/P. So we have 178 rows, and columns HAM-D group time subj.
If we fit the model in R syntax
sagelmer = lmer (outcome ~ time + time:group + (time|subj), data = sage, control = lmerControl(check.nobs.vs.nRE = "warning"),
from the information you have, give the point estimate for the fixed effects, time and time:group .
Write out the level 1 , level 2 model corresponding to the combined model in the lmer statement.

Week 5. Experimental Protocols and Comparing Group Growth

Longitudinal Research Questions

1. Individual and Group Growth
2. Correlates, Predictors of Change $\xlongequal[\substack{\text { Time1-tin } \\ \text { example }}]{ }$
3. Stability over Time
4. Comparing Experimental Groups
5. Comparing Nonexperimental Groups
6. Analysis of Reciprocal Effects
7. Growth in Multiple Measures
"Different designs and analyses address different sets of these questions."

Time 1, Time 2 ditce $\begin{gathered}\text { S47T } 222 \\ \text { weck } 4\end{gathered}$

Properties (Moments of Observables) of Collections of Growth Curves
for $\operatorname{ndN} P$

$$
\xi_{p}(t)=\xi_{p}(0)+\theta_{p} t
$$

$$
t_{i}(\dot{k},=1, \ldots T)
$$

$$
p(p, 1, \ldots n)
$$

Corral change, initial status exogenous var w

$$
P_{w}(t)=\frac{\left(t-t^{0}\right) \rho_{w \sigma}+k \rho_{w} \xi\left(t^{0}\right)}{\left[K^{2}+\left(t-t^{0}\right)^{2}\right]^{1 / 2}}
$$

where $t^{u}=t^{0}+k\left(\frac{\rho_{\omega} \theta}{\rho_{\omega \xi(t 0)}}\right) \quad t^{l}=t^{0}-k\left(\frac{\rho_{\omega \xi(0)}}{\rho_{\omega \theta}}\right)$
Myths 1 example: $(1.64) \quad \theta \sim U[1,9], \xi\left(t^{0}\right) \sim U[38,62]$

$$
t^{\circ}=2 \quad \sigma_{\theta}^{2}=5.333 \sigma_{\xi(\mathbb{1}}^{2}=48 \quad \rho_{\omega \theta}=0 \quad \rho_{\omega \xi(t g}=
$$

ut
true ti $\quad X_{i p}=\xi_{i p}+\varepsilon \quad \varepsilon \sim\left(0, \sigma_{\varepsilon}^{2}\right)_{n} \quad$ errorsin \quad arrables weds ex $\sigma_{\varepsilon}^{2}=10$

$$
\begin{aligned}
& \text { Centering, scale } \\
& t^{0}=-\sigma_{\xi}(0) \sigma / \sigma_{\sigma}^{2} \\
& \xi_{p}(t)=\xi_{p}\left(t^{0}\right)+\theta_{p}\left(t-t^{0}\right) \\
& \text { Moments } \\
& \text { Scale } K=\sigma_{\xi(t)} / \sigma_{\theta} \\
& \text { covariance } \sigma_{\xi\left(t_{1}\right) \xi\left(t_{2}\right)}= \\
& \left(t_{1}-t^{0}\right)\left(t_{2}-t^{0}\right) \sigma_{\sigma}^{2}+\sigma_{\xi\left(t^{0}\right)}^{2} \\
& \text { Varlanie } \sigma_{\xi(t)}^{2}=\sigma_{\xi\left(t^{0}\right)}^{2}+\left(\left(t-t^{0}\right) / k\right)^{2} \sigma_{\xi(t)}^{2} \\
& \sigma_{\xi(t)}^{2} / \sigma_{\xi\left(t^{0}\right)}^{2}=1+\left(\frac{t-t_{0}^{0}}{k}\right)^{2}
\end{aligned}
$$

uncorrelated random variables $\xi\left(t^{\circ}\right)$ and θ (e.g., each distribution Gaussian or each distribution Uniform) to generate these parameter values for each p. By doing so, the scale for the time metric $\kappa=\sigma_{\xi\left(t^{\circ}\right)} / \sigma_{\theta}$ is specified. By then stating the discrete values of the times of observation $\left\{t_{i}\right\}=t_{1}, \ldots, t_{T}$, we then have values for the $\xi_{p}\left(t_{\mathrm{i}}\right)$ for $p=1, \ldots, n$. The exogenous characteristic W is generated with specified mean and variance, specifying the two correlations $\rho_{w \xi(\rho)}$ and $\rho_{w \theta}$ (under the constraint $\left.\left(\rho_{w \xi\left(\rho^{\rho}\right)}\right)^{2}+\left(\rho_{w \theta}\right)^{2} \leq 1\right)$. The final step is to create the fallible observables by the addition of measurement error to the $\xi_{p}\left(t_{i}\right)$ according to the classical test theory model: $X_{p}\left(t_{i}\right)=\xi_{p}\left(t_{\mathrm{i}}\right)+\varepsilon_{i}$ for $p=1, \ldots, n$.

Consequences for Second Moments

The choices of the values above determine the population values of the familiar second moments of $\xi_{p}\left(t_{i}\right)$ or $\mathrm{X}_{p}\left(t_{i}\right)$ for the artificial data. In practice, these values of these quantities-variances, correlations, etc.-are often chosen first (say to correspond to values familiar from empirical research or common sense), and then solutions (explicitly or by trial and error) for the corresponding values for the simulation procedure above are obtained. The relations that provide values of these second moments for the $\xi_{p}\left(t_{i}\right)$ are variance

$$
\sigma_{\xi(t)}^{2}=\sigma_{\xi\left(t^{\circ}\right)}^{2}+\left(\left(t-t^{0}\right) / \kappa\right)^{2} \sigma_{\xi\left(t^{\circ}\right)}^{2}
$$

covariance (also yields correlation, using above)

$$
\sigma_{\xi\left(t_{1}\right) \xi\left(t_{2}\right)}=\left(t_{1}-t^{0}\right)\left(t_{2}-t^{0}\right) \sigma_{\theta}^{2}+\sigma_{\xi\left(r^{\circ}\right)}^{2}
$$

correlation between change and initial status

$$
\rho_{\theta \xi(t)}=\frac{t-t^{0}}{\left[\kappa^{2}+\left(t-t^{\circ}\right)^{2}\right]^{1 / 2}},
$$

correlation with exogenous variable, W

$$
\rho_{W \xi(t)}=\frac{\left(t-t^{\circ}\right) \rho_{w \theta}+\kappa \rho_{\left.W \xi()^{0}\right)}}{\left[\kappa^{2}+\left(t+t^{\circ}\right)^{2}\right]^{1 / 2}}
$$

Technical Specifications for Exhibit 1

In terms of the model parameters, the values for the artificial data in Exhibit 1 are $t^{\circ}=2 ; \sigma_{\theta}^{2}=5.333 ; \sigma_{\xi\left(r^{\circ}\right)}^{2}=48$; for $\theta \sim U[1,9], \xi\left(t^{\circ}\right) \sim U[38,62]$. Population mean rate of change is 5 , and values of the population correlation coefficients among the $\xi\left(t_{i}\right)$ for observation times $t_{1}=1, t_{2}=3, t_{3}=5$ are $\rho_{\xi(1) \xi(3)}=.80, \rho_{\xi(1) \xi(5)}=.447, \rho_{\xi(3) \xi(5)}=.894$. Furthermore, for the fallible measure X with $\operatorname{var}(\varepsilon)=10$, the population correlations are $\rho_{X(1) X(3)}=.674$, $\rho_{X(1) X(5)}=.391, \rho_{X(3) X(5)}=.781$.

ACKNOWLEDGMENTS

I wish to thank Ghassan Ghandour and Haggai Kupermintz for computational and editorial assistance and Gary Williamson for providing the North Carolina data. Programs described in this chapter can be obtained by writing to David Rogosa at rag@leland.stanford.edu.

ADDITIONAL REFERENCES

Alwin, D. F. (1988). Structural equation models in research on human development and aging. In K. W. Schaie, R. T. Campbell, W. M. Meredith, \& S. M. Rawlings (Eds.), Methodological issues in aging research (pp. 71-170). New York: Springer
Brogan, D. R., \& Kutner, M. H. (1980). Comparative analyses of pretest-postest research designs. American Statistician, 34, 229-232.
Bryk, A. S., \& Raudenbush, S. W. (1987). Application of hierarchical linear models to assessing change. Psychological Bulletin, 101, 147-158.
Efron, B., \& Tibshirani, R. J. (1993). An introduction to the bootstrap. New York: Chapman \& Hall.
Fern, T. (1975). A Bayesian approach to growth curves. Biometrika, 62, 89-100.
Freedman, D. A. (1987). As others see us: A case study in path analysis. Journal of Educational Statistics, 12, 101-128.
Freedman, D. A. (1991). Statistical models and shoe leather. In P. Marsden (Ed.), Sociological Methodology 1991 (pp. 291-313). Washington, DC: American Sociological Association.
Goldstein, H. (1979a). The design and analysis of longitudinal studies. London: Academic Press Goldstein, H. (1979b). Some models for analysing longitudinal data on educational attainment. Journal of the Royal Statistical Society A, 142, 407-442.
Holland, P. W. (1988). Causal inference, path analysis and recursive structural equation models. In C. Clogg (Ed.), Sociological Methodology 1988 (pp. 449-484). Washington, DC: American Sociological Association.
Hui, S. L., \& Berger, J. O. (1983). Empirical Bayes estimation of rates in longitudinal studies. Journal of the American Statistical Association, 78, 753-760.
Rogosa, D. R. (1987). Casual models do not support scientific conclusions: A comment in support of Freedman. Journal of Educational Statistics, 12, 185-195.
Rogosa, D. R. (1988). Myths about longitudinal research. In K. W. Schaie, R. T. Campbell, W. M. Meredith, and S. C. Rawlings (Eds.), Methodological issues in aging research (pp. 171-209). New York: Springer.
Rogosa, D. R. (1991). A longitudinal approach to ATI research: Models for individual growth and models for individual differences in response to intervention. In R. E. Snow and D. E. Wiley (Eds.), Improving inquiry in social science: A volume in honor of Lee J. Cronbach (pp. 221-248). Hillsdale, NJ: Lawrence Erlbaum.
Rogosa, D. R. (1993). Individual unit models versus structural equations: Growth curve examples. In K. Haagen, D. Bartholomew, and M. Diestler (Eds.), Statistical modeling and latent variables (pp. 259-281). Amsterdam: Elsevier North-Holland.
Rogosa, D. R., \& Ghandour, G. A. (1989). Timepath: Statistical analysis of individual trajectories. Stanford University.

Package 'PairedData'

July 2, 2014
Type Package
Title Paired Data Analysis
Version 1.0.1
Date 2013-04-18
Author Stephane Champely champely@univ-lyon1.fr
Maintainer Stephane Champely champely@univ-lyon1.fr
Description This package provides many datasets and a set of graphics (based on ggplot2), statistics, effect sizes and hypothesis tests for analysing paired data with S 4 class.
License GPL (>= 2)
Depends methods,graphics,MASS,gld,mvtnorm,lattice,ggplot2
Collate global1.R ClassP1.R
NeedsCompilation no
Repository CRAN
Date/Publication 2013-04-19 07:43:41
R topics documented:
PairedData-package 3
Anorexia 3
anscombe2 4
Barley 5
Blink 6
Blink2 7
BloodLead 8
bonettseier.var.test 9
ChickWeight 10
paired.plotMcNeil Parallel lines plot

Description

Produce a parallel lines plot for paired data.

Usage

paired.plotMcNeil(df, condition1, condition2, groups = NULL, subjects,facet = TRUE, ...)

Arguments

df a data frame.
condition1 name of the variable corresponding to the second sample.
condition2 name of the variable corresponding to the first sample.
groups names of the variable corresponding to groups (optional).
subjects names of the variable corresponding to subjects.
facet faceting or grouping strategy for plotting?
. . . further arguments to be passed to methods.

Value

a graphical object of class ggplot.

Author(s)

Stephane CHAMPELY

References

McNeil, D.R. (1992) On graphing paired data. The American Statistician, 46 :307-310.

See Also

plotBA

Examples

```
data(PrisonStress)
paired.plotMcNeil(PrisonStress,"PSSbefore","PSSafter",subjects="Subject")
```


Chapter 11

1. For a poll of a random sample of 1600 voting-age British citizens, 944 indicated approval of the Prime Minister's performance in office. Six months later, of these same 1600 people, 880 indicated approval. Table 1.22 summarizes results.

Agresti, dichotomous, paired data

Table 1.22:

First	Second Survey		
Survey	Approve	Disapprove	Total
Approve	794	150	944
Disapprove	86	570	656
Total	880	720	1600

Table 1.23:

Adult	Juvenile Court	
Court	Rearrest	No Rearrest
Rearrest	158	515
No Rearrest	290	1134

Source: Based on a study at the Univ. of Florida by D. Bishop, C. Frazier, L. Lanza-Kaduce, and L. Winner. Thanks to Dr. Larry Winner for showing me these data.
a. Compare the marginal proportions using a confidence interval.
b. Perform McNemar's test, and interpret.
c. Explain why inferences about the difference in approval ratings are more precise than if we had the same sample proportions but with independent samples of size 1600 each.
2. Table 1.23 refers to a sample of juveniles convicted of a felony in Florida in 1987. Matched pairs were formed using criteria such as age and the number of prior offenses. For each pair, one subject was handled in the juvenile court and the other was transferred to the adult court. The response of interest was whether the juvenile was rearrested by the end of 1988. Compare the true proportions rearrested for the adult and juvenile court assignments. Interpret.
3. Table 1.24 shows results when subjects of age between 18 and 29 were asked "Do you think a person has the right to end his or her own life if this person (1) has an incurable disease? (2) is tired of living an ready to die?"
a. Compare the marginal proportions using a confidence interval.
b. Perform McNemar's test, and interpret.

Table 1.24:

Let Patient Die			
Suicide	Yes	No	Total
Yes	1097	90	1187
No	203	435	638
Source: 1994 General Social Survey			

older siblings and in 20 of the 114 younger siblings. ${ }^{59}$ These data are shown Table 10.25 .

TABLE 10.25 HIV Infection Data

HIV?		Older Sibling	Younger Sibling
	Yes No	19	20
	No Total	95	94 114

At first glance, it might appear that a regular chi-square test could be used to te the null hypothesis that the probability of HIV infection is the same for older sil lings as for younger siblings. However, as we stated in Section 10.6, for the ch square test to be valid the two samples-of 114 older siblings and of 114 young siblings-must be independent of each other. In this case the samples are clear dependent. Indeed, these are paired data, with a family generating the pair (old sibling, younger sibling).

Table 10.26 presents the data in a different format. This format helps foct attention on the relevant part of the data.

TABLE 10.26 HIV Infection Data Shown by Pairs

From Table 10.26 we can see that there are 79 pairs in which both sibling have the same HIV status: 2 are "yes/yes" pairs and 77 are "no/no" pairs. These pairs, which are called concordant pairs, do not help us determine whether HI infection is more likely for younger siblings than for older siblings. The remaini 35 pairs- 17 "yes/no" pairs and 18 "no/yes" pairs-do provide information on relative likelihood of HIV infection for older and younger siblings. These pairs a called discordant pairs; we will focus on these 35 pairs in our analysis.

If the chance of HIV infection is the same for older siblings as it is f younger siblings, then the two kinds of pairs-"yes/no" and "no/yes"-are equal likely. Thus, the null hypothesis
H_{0} : the probability of HIV infection is the same for older siblings as it is ff younger siblings
is equivalent to
H_{0} : among discordant pairs, Pr ("yes/no") $=\operatorname{Pr}($ no/yes $)=\frac{1}{2}$

McNemar's Test

The hypothesis that discordant pairs are equally likely to be "yes/no" or "no/ye can be tested with the chi-square goodness-of-fit test developed in Section 10.2. Th application of the goodness-of-fit test is known as McNemar's test and has

TABLE 10.27 of Paired Proportion Data	
	Yes

articularly simple form.* Let n_{11} denote the number of "yes/yes" pairs, n_{12} the umber of "yes/no" pairs, n_{21} the number of "no/yes" pairs, and n_{22} the number of no/no" pairs, as shown in Table 10.27. If H_{0} is true, the expected number of yes/no" pairs is $\frac{n_{12}+n_{21}}{2}$, as is the expected number of "no/yes" pairs. Thus, the est statistic is

$$
\chi_{s}^{2}=\frac{\left(n_{12}-\frac{\left(n_{12}+n_{21}\right)}{2}\right)^{2}}{\frac{\left(n_{12}+n_{21}\right)}{2}}+\frac{\left(n_{21}-\frac{\left(n_{12}+n_{21}\right.}{2}\right)^{2}}{\frac{\left(n_{12}+n_{21}\right)}{2}}
$$

which simplies to

$$
\chi_{s}^{2}=\frac{\left(n_{12}-n_{21}\right)^{2}}{n_{12}+n_{21}}
$$

The distribution of χ_{s}^{2} under the null hypothesis is approximately a χ^{2} distribution vith 1 degree of freedom.

IIV Transmission to Children. For the data given in Example 10.38, $n_{12}=17$ ind $n_{21}=18$. Thus,

$$
\chi_{s}^{2}=\frac{(17-18)^{2}}{17+18}=0.0286
$$

From Table 9 we see that the P-value is greater than .20. (Using a computer gives $P=.87$.) The data are very much consistent with the null hypothesis that the probbility of HIV infection is the same for older siblings as it is for younger siblings.

Exercises 10.63-10.65

10.63 As part of a study of risk factors for stroke, 155 women who had experienced a hemorrhagic stroke (cases) were interviewed. For each case, a control was chosen who had not experienced a stroke; the control was matched to the case by neighborhood of residence, age, and race. Each woman was asked whether she used oral

The null hypothesis tested by McNemar's test can also be tested by using the binomial distribution. The null hypothesis states that among discordant pairs, $\operatorname{Pr}($ "yes $/ \mathrm{no}$ ") $=$ Pr ("no/yes") $=\frac{1}{2}$. Thus, under the null hypothesis, the number of "yes/no" pairs has a binomial distribution with $n=$ the number of discordant pairs and $p=.5$.

Package 'PropCIs'

February 23, 2018

Type Package
Title Various Confidence Interval Methods for Proportions
Version 0.3-0
Date 2018-02-22
Author Ralph Scherer
Maintainer Ralph Scherer shearer.ra76@gmail.com
Description
Computes two-sample confidence intervals for single, paired and independent proportions.
License GPL
URL https://github.com/shearer/PropCIs
BugReports https://github.com/shearer/PropCIs/issues
LazyLoad yes
NeedsCompilation no
Repository CRAN
Date/Publication 2018-02-23 16:49:49 UTC
R topics documented:
PropCIs-package 2
acceptbin 3
add4ci 4
addz2ci 5
blakerci 5
diffci.bayes 6
diffci.bayes.hpd 7
diffpropci.mp 8
diffpropci.Wald.mp 9
diffscoreci 10
exactci 11
limit 11
midPci 12
diffpropci.mp Adjusted Wald interval for a difference of proportions with matched pairs

Description

Adjusted Wald interval for a difference of proportions with matched pairs. This is the interval called Wald +2 in Agresti and Min (2005). Adds 0.5 to each cell before constructing the Wald CI

Usage

diffpropci.mp(b, c, n, conf.level)

Arguments

b	off-diag count
c	off-diag count
n	sample size
conf.level	confidence coefficient $1-\alpha$

Details

The interval is truncated, when it overshoots the boundary

Value

A list with class '"htest"' containing the following components:
conf.int a confidence interval for the difference in proportions.
estimate estimated difference in proportions

References

Agresti, A. and Min, Y. (2005) Simple improved confidence intervals for comparing matched proportions. Statistics in Medicine 24 (5), 729-740.

Examples

```
diffpropci.mp(b = 40, c = 20, n = 160, conf.level = 0.95)
```

```
McNemar (via Agresti) Time1-Time2 Dichotomous data
ratings <- matrix(c(794,150, 86, 570), ncol=2, byrow=TRUE,
+ dimnames = list("First Survey" = c("Approve", "Disapprove"),
+ "Second Survey" = c("Approve", "Disapprove")))
> mcnemar.test(ratings, correct=FALSE)
R-session
> ?mcnemar.test
> ratings <- matrix(c(794,150, 86, 570), ncol=2, byrow=TRUE,
+ dimnames = list("First Survey" = c("Approve", "Disapprove"),
+ "Second Survey" = c("Approve", "Disapprove")))
> mcnemar.test(ratings, correct=FALSE)
```

McNemar's Chi-squared test
data: ratings
McNemar's chi-squared $=17.3559$, df $=1, p-v a l u e=3.099 \mathrm{e}-05$

```
> ratings
            Second Survey
First Survey Approve Disapprove
    Approve 794 150
    Disapprove 86 570
> sqrt(17.36)
[1] 4.166533
> #Agresti p.411; decline in approval from . 59 to .55 (signif) CI (-.06,-.02)
# see R-package "PropCIs"
```

> install.packages("PropCIs")
Installing package(s) into 'C:/Users/rag/Documents/R/win-library/2.14'
(as 'lib' is unspecified)
--- Please select a CRAN mirror for use in this session ---
trying URL 'http://cran.stat.ucla.edu/bin/windows/contrib/2.14/PropCIs_0.1-7.zip'
Content type 'application/zip' length 48541 bytes (47 Kb)
opened URL
downloaded 47 Kb
package 'PropCIs' successfully unpacked and MD5 sums checked
The downloaded packages are in
C: \Users \rag \backslash AppData \Local \Temp \backslash RtmpINgSzT\downloaded_packages
> library(PropCIs)
Warning message:
package 'PropCIs' was built under R version 2.14 .2
> diffpropci.mp(150,86, 1600, .95)
data:
95 percent confidence interval:
-0.05868294-0.02121719
sample estimates:
[1] -0.03995006

References
Agresti, A. and Min, Y. (2005) Simple improved confidence intervals for comparing matched proportions. Statistics in Medicine 24 (5), 729-740.

2.2 Captopril Data

- Taken from Hand, Daly, Lunn, McConway, \& Ostrowski (1994)
- 15 patients with hypertension
- The response of interest is the supine blood pressure, before and after treatment with CAPTOPRIL

[^0]| | Before | | After | |
| ---: | ---: | ---: | ---: | ---: |
| Patiënt | SBP | DBP | SBP | DBP |
| 1 | 210 | 130 | 201 | 125 |
| 2 | 169 | 122 | 165 | 121 |
| 3 | 187 | 124 | 166 | 121 |
| 4 | 160 | 104 | 157 | 106 |
| 5 | 167 | 112 | 147 | 101 |
| 6 | 176 | 101 | 145 | 85 |
| 7 | 185 | 121 | 168 | 98 |
| 8 | 206 | 124 | 180 | 105 |
| 9 | 173 | 115 | 147 | 103 |
| 10 | 146 | 102 | 136 | 98 |
| 11 | 174 | 98 | 151 | 90 |
| 12 | 201 | 119 | 168 | 98 |
| 13 | 198 | 106 | 179 | 110 |
| 14 | 148 | 107 | 129 | 103 |
| 15 | 154 | 100 | 131 | 82 |

- Research question:

How does treatment affect BP ?

- Remarks:
\triangleright Paired observations:
Most simple example of longitudinal data
\triangleright Much variability between subjects

Blood pressure

measurement of change, this paper does chart a very different direction from that seen in the behavioral sciences literature over the last 50 years. The intended impact of this paper is to direct the emphasis in the measurement of change to the statistical analysis of collections of individual time paths.

The best example of the proper approach to the study of change is the use of models for individual growth in Bock (1976). Also, a kindred perspective in modeling individual growth is seen in the work of Weisberg and Bryk on the estimation of treatment effects from nonequivalent group designs (Bryk \& Weisberg, 1977; Bryk, Strenio, \& Weisberg, 1980; Weisberg, 1979). The antithesis of our approach is represented by attempts to analyze "change" through covariance structure models for relations among variables as in Sörbom (1976) or similarly, through simpler regression models as in the texts by Cohen and Cohen (1975, chap. 9), Goldstein (1980, chap. 5), and Kessler and Greenberg (1981).

The body of this paper is composed of results and observations that follow naturally from the models for individual growth. These results are used for two purposes. First, much of the detailed discussion of this paper is devoted to clearing up misconceptions and resolving extant confusions in the psychometric work on the measurement of change. Second, the framework introduced for the measurement of change is designed to encourage further methodological work and to improve empirical investigations of change, with an emphasis on the use of multiwave data.

Although this paper strives to be comprehensive, many relevant topics in the study of individual change could not be included. Among these topics are models for change in binary variables (Plewis, 1981), the construction of test items and tests for use in the measurement of change (Saupe, 1966), and the scaling of test-item data using Item Response Theory methods (see Bock, 1976). Also, efficient design for the estimation of individual growth curves, that is, determination of the number and spacing of observations, is an important omission. Finally, we remind the reader that, except for occasional comment, we do not address other purposes for the analysis of longitudinal data,
such as correlates of change, comparison of change across experimental or nonequivalent groups, or the study of reciprocal effects.

The major messages of this investigation are summarized in the following series of mottos.

Mottos for the Measurement of Individual Change

1. Individual time paths are the proper focus for the analysis of change.
2. A model for individual change is useful for the measurement of change.
3. The collection of individual X on t regression functions is the key initial summary of the data. The X_{2} on X_{1} regression is not a good source of information on individual change.
4. Two waves of data are better than one, but maybe not much better. Two data points provide meager information on individual change, and thus the measurement of change often will require more than the traditional pre-post data.
5. When only two waves of data are available, the difference score is a natural and useful estimate of individual change.
6. There's more than one way to judge a measure of change. Reliability is not the "be all and end all" in the measurement of change. Statistical properties are important.
a. Low reliability does not necessarily mean lack of precision.
b. The difference between two fallible measures can be nearly as reliable as the measures themselves.
7. The correlation between true change and true initial status (zero or otherwise) is an interesting fact of life. Use of fallible scores to construct poor estimates of this correlation does not invalidate the difference score as a measure of individual change.
8. Measures of individual change can be "improved" by incorporating information from all n persons into the measure of change.
9. The residual change question--How much would person j have changed if everyone had started out equal?-is extremely difficult to answer and is logi-
cally subordinate to the question-What is the (true) change of person j ? First things first in the measurement of change.
10. When used wisely, multiwave data will yield far better determinations of individual change than will two-wave data.

Reterences

Bereiter, C . Some persisting dilemmas in the measurement of change. In C. W. Harris (Ed.), Problems in the measurement of change. Madison, Wisc.: University of Wisconsin Press, 1963.
Blomquist, N . On the relation between change and initial value. Journal of the American Statistical Association, 1977, 72, 746-749.
Bock, R. D. Basic issues in the measurement of change. In D. N. M. de Gruijter \& L. J. T. van der Kamp (Eds.) Advances in psychological and educational measurement. New York: Wiley, 1976.
Bohrnstedt, G. W. Observations on the measurement of change. In E. F. Borgatta (Ed.), Sociological Methodology 1969. San Francisco: Jossey-Bass, 1969.
Bond, L. On the base-free measure of change proposed by Tucker, Damarin, and Messick. Psychometrika, 1979, 44, 351-355.
Bryk, A. S., \& Weisberg, H. I. Use of the nonequivalent control group design when subjects are growing. Psychological Bulletin, 1977, 84, 950-962.
Bryk, A. S., Strenio, J. F., \& Weisberg, H. I. A method for estimating treatment effects when individuals are growing. Journal of Edicational Statistics, 1980, S, 5-34.
Cohen, J., \& Cohen, P. Applied multiple regression/correlation analysis for the behavioral sciences. Hillsdale, N.J.: Erlbaum, 1975.

Cox, D. R., \& Hinkley, D. V. Theoretical statistics. London: Chapman and Hall, 1974.
Cronbach, L. J., \& Furby, L. How should we measure "change"-or should we? Psychological Bulletin, 1970, 74, 68-80.
DuBois, P. H. Multivariate correlational analysis. New York: Harper, 1957.
Efron, B., \& Morris, C. Limiting the risk of Bayes and empirical Bayes estimators-Part II: The empirical Bayes case. Journal of the American Statistical Association, 1972, 67, 130-139.
Efron, B., \& Morris, C. Stein's paradox in statistics. Scientific American, 1977, 236(5), 119-127.
Fearn, T. A Bayesian approach to growth curves. Biometrika, 1975, 62, 89-100.
Furby, L. Interpreting regression toward the mean in developmental research. Developmental Psychology, 1973, 8, 172-179.
Glass, G. V. Response to Traub's "Note on the reliability of residual change scores." Journal of Educational Measurement, 1968, 5, 265-267.
Goldstein, H . The design and analysis of longitudinal studies, London: Academic Press, 1979.
Guire, K. E., \& Kowalski, C. J. Mathematical description and representation of developmental change functions on the intra- and interindividual levels. In J. R. Nesselroade \& P. B. Baltes (Eds.), Longitudinal
research in the study of behavior and development. New York: Academic Press, 1979.
Hannan, M. T., \& Tuma, N. B. Methods for temporal analysis. In A. Inkeles (Ed.), Annual review of sociology (Vol. 5). Palo Alto, Calif.: Annual Reviews, 1979.

Kelley, T. L. Interpretation of educational measurements. Yonkers-on-Hudson, N.Y.: World Book, 1927. Kessler, R. C. The use of change scores as criteria in longitudinal survey research. Quality and Quantity, 1977, 11, 43-66.
Kessler, R. C., \& Greenberg, D. F. Linear panel analysis. New York: Academic Press, 1981.
Knapp, T. R. The (un)reliability of change scores in counseling research. Measurement and Evaluation in Guidance, 1980, 13, 149-157.
Labouvie, E. W. Measurement of individual differences in intraindividual change. Psychological Bulletin, 1980, 88, 54-59.
Lindley, D. V., \& Smith, A. F. M. Bayes estimates for the linear model. Journal of the Royal Statistical Society (Series B), 1972, 34, 1-41.
Linn, R. L., \& Slinde, J. A. The determination of the significance of change between pre- and posttesting periods. Review of Educational Research, 1977, 47, 121-150.
Lord, F. M. The measurement of growth. Educational and Psychological Measurement, 1956, 16, 421-437.
Lord, F. M. Further problems in the measurement of growth. Educational and Psychological Measurement, 1958, 18, 437-454.
Lord, F. M. Elementary models for measuring change In C. W. Harris (Ed.), Problems in measuring change. Madison, Wisc.: University of Wisconsin Press, 1963.
Lord, F. M. Significance test for a partial correlation corrected for attenuation. Educational and Psychological Measurement, 1974, 34, 211-220.
Lord, F. M., \& Novick, M. N. Statistical theories of mental test scores. Reading, Mass.: Addison-Wesley Publishing Company, 1968.
Manning, W. H., \& DuBois, P. H. Correlational methods in rescarch on human learning. Perceptual and Motor Skills, 1962, 15, 287-321.
Marks, E., \& Martin, C. G. Further comments relating to the measurement of change. American Educalional Research Journal, 1973, 10, 179-191.
Markus, G. B. Analyzing panel data. Beverly Hills, Calif:: Sage Publications, 1979.
McNemar, Q. On growth measurement. Educational and Psychological Measurement, 1958, 18, 47-55.
Messick, S. Denoting the base-free measure of change. Psychometrika, 1981, 46, 215-217.
Mosier, C. I. On the reliability of a weighted composite. Psychometrika, 1943, \&, 161-168.
Nesselroade, J. R., Stigler, S. M., \& Baltes, P. B. Regression toward the mean and the study of change. Psychological Bulletin, 1980, 88, 622-637.
O'Connor, E. F. Extending classical test theory to the measurement of change. Review of Educational Research, 1972, 42, 73-98.
Plewis, I. A comparison of approaches to the analysis of longitudinal categoric data. British Journal of Mathematical and Statistical Psychology, 1981, 34, 118-123.

Longitudinal Panel data
observations $X_{i p}$
Taken at Time $t_{i}(i=1, \ldots T)$
FOR INDIVIDUAL $p(p=1, \cdots, n)$
T "Waves" of data
Measurement model

$$
X_{i p}=\varepsilon_{i p}+\epsilon_{i p}
$$

"True Score" $\varepsilon_{i p}$
GROWTH MODELS

$$
\xi_{p}(t)=f(\xi, t)
$$

Collection of Growth Curves
For individual p, growth curve for single measure $\xi_{p}(t)$
Parameters of growth curve vary over
Examples: Straight-line growth

$$
\xi_{p}(t)=\xi_{p}(0)+\theta_{p} t
$$

Exponential growth

$$
\xi_{p}(t)=\lambda_{p}-\left(\lambda_{p}-\xi_{p}(0)\right) e^{-\gamma_{p} t}
$$

Alternative models
Autoregressive process/
Simplex models

Systematic Individual Differences in Growth
Stage 1 Growth curve

$$
\Im_{p}(t)=\xi_{p}(0)+\theta_{p} t
$$

Stage 2 Parameters of growth curve depend on individual characteristics W_{p} (vector, scalar)
e.g. $E\left(\theta_{p} \mid \omega_{p}\right)=\mu_{\theta}+\gamma\left(\omega_{p}-\mu_{w}\right)$ can also model level w/ same or diff ω.

Myths about Longitudinal Research

1. Two Observations a longitudinal study make. 2. The difference score is intrinsically unreliable and unfair
2. You can determine from the correlation matrix for the longitudinal data whether or not you are measuring the same thing over time
3. The correlation between change and initial status is:
(a) negative; (b) zero; (c) positive; (d) all of the above
4. You can't avoid regression toward the mean
5. Residual change cures what ails the difference score
6. Analyses of covariance matrices inform about change
7. Stability coefficients estimate:
(a) the consistency over time of an individual; (b) the consistency over time of an average individual; (c) the consistency over time of individual differences; (d) none of the above; (e) some of the above
8. Casual analyses support causal inferences about reciprocal effects

Meta-Myth
"Investigators who ask questions regarding gain scores would ordinarily be better advised to frame their questions in other ways."
(Cronbach \& Furby, 1970)

STUDY MAkE

AMOUNT OF CHANGE
Individual Growth Curve

$$
\xi_{p}(t)=\lambda_{p}-\left[\lambda_{p}-\xi_{p}(0)\right] e^{-\gamma_{p} t}
$$

Amount of Change between t and $t+r$

$$
\Delta_{p}(t, t+r)=\left[\lambda_{p}-\xi_{p}(0)\right]\left[1-e^{-V_{p} \tau}\right] e^{-V_{p} t}
$$

Example - six growth curves.
Message: Amount of change no guide to individual differences in growth.

M1 individual growth $\xi_{p}(t)=f(\xi, t)$
proportional growth to asymp tote λ_{p}
Amantot Change

$$
\begin{aligned}
& \begin{array}{ll}
A_{p}(t, t+c)=\left[\lambda_{p}-\xi_{p}(0)\right]\left[1-e^{-\gamma_{p} t}\right] e^{-\gamma_{p}(t)} & \left.\xi_{p}(0)\right) e^{-\gamma_{p} t} \\
\text { trading }
\end{array} \\
& \text { Mf } x_{i p}=F_{i p}+\varepsilon \text { (fallible score, see back) } \\
& D=x_{2}-x_{1}, E(D)=\xi_{2}-\xi_{1} \\
& \sigma_{\Lambda}^{2}=\left(t_{2}-t_{1}\right)^{2} \sigma_{\theta_{1}}^{2} \sigma_{\text {curies }} \text { delia } y_{1} l_{i} t_{y} \rho(D)=\frac{\sigma_{1}^{2}}{\sigma_{Q}^{2}+\sigma_{\varepsilon_{2}}^{2}-\varepsilon_{1}} \\
& \text { individual in in change }
\end{aligned}
$$

$1 M 3 P_{\xi(t) \xi(t+c) \text { on back, depends on choice of }} t$, $t+c$ for $\rho_{\xi, \Delta}=0 \quad \rho_{\xi, \xi_{2}}=\left(1+\sigma_{\Delta}^{2} / \sigma_{\xi,}^{2}\right)^{-1 / 2}$
$144 \xi\left(t_{1}\right) \theta$ on back depends on $t_{1}-t^{\circ}$

$$
\begin{aligned}
& \frac{E\left(\xi_{2} \mid \xi_{1}=c\right)-\mu_{\xi_{2}}}{\sigma_{\xi_{2}}}<\frac{c-\mu_{\xi_{1}}}{\sigma_{\xi_{1}}} \Rightarrow \rho_{\xi_{1} \xi_{2}}<1
\end{aligned}
$$

In metric it data $E\left(\xi_{2} \mid \xi_{1}=c\right)-\mu_{\xi_{2}}<c-\mu_{\xi_{1}}$

$$
\Rightarrow \rho_{\xi, A}<0
$$

M617 reside change in sample $x_{2} \cdot x_{1}$ bias
correlation $\rho_{[D} \cdot e_{\left.\left(t_{1}\right)\right] \omega \text { poor rchratitith }}$

$$
\Delta \cdot \xi\left(t_{1}\right)=\xi\left(t_{2}\right) \cdot \xi\left(t_{1}\right)
$$

Amount of True Change

	$\Delta\left(t_{I}, t_{I}+1\right)$		
	$t_{I}=0$	$t_{I}=4$	$t_{I}=10$
A	6.64	2.44	.54
B	6.32	2.62	.70
C	5.88	2.75	.88
D	5.37	2.81	1.07
E	4.63	2.75	1.26
F	3.81	2.55	1.40

The

difference score
is
intrinsically
unreliable
and
unfair

Myths Companion
$M 1$ individual growth $\xi_{p}(t)=f(\xi, t)$
proportional growth to asymp tote λ_{p}

Amantot Change

$$
\begin{aligned}
& \left.A_{p}(t, t+c)=\left[\lambda_{p}-\xi_{p}(0)\right]\left[1-e^{-\gamma_{p} t}\right] e^{-\gamma_{p}(t)}-\xi_{p}(0)\right) e^{-\gamma_{p} t} \\
& \text { Mf } \quad x_{i p}=\rho_{i p}+\varepsilon \text { (falls bye score, see back) } \\
& D=x_{2}-x_{1}, E(D)=\xi_{2}-\xi_{1}
\end{aligned}
$$

in change

M3 $\rho_{\xi(t) \xi(t+c) \text { on back, depends on choric e of }}^{t, t+c}$ for $\rho_{\xi_{, ~}, ~}=0 \quad \rho_{\xi, \xi_{2}}=\left(1+\sigma_{\Delta}^{2} / \sigma_{\xi_{1}}^{2}\right)^{-1 / 2}$
$14 \rho_{\xi}\left(t_{1}\right) \theta$ on back depends on $t_{1}-t^{\circ}$

M5 Standardized Tautology

$$
\frac{E\left(\xi_{2} \mid \xi_{1}=C\right)-\mu_{\xi_{2}}}{\sigma_{\xi_{2}}}<\frac{c-\mu_{\xi_{1}}}{\sigma_{\xi_{1}}} \Rightarrow \rho_{\xi_{1} \xi_{2}}<1
$$

In metric it data $\left.E\left(\xi_{2}\right) \xi_{1}=c\right)-\mu_{\xi_{2}}<c-\mu_{\xi_{1}}$

$$
\Rightarrow \rho_{\xi, A}<0
$$

M6/7 reside change in sample $x_{2} \cdot x_{1}$ bias
correlation $\rho\left[A \cdot \xi\left(t_{1}\right)\right] \omega$ porrchating

$$
\Delta \cdot \xi\left(t_{1}\right)=\xi\left(t_{2}\right) \cdot \xi\left(t_{1}\right)
$$

Traditional Tabulation OF $\rho(D)$ (FROM LINN α SLINDE, 1977)

$\rho_{x_{1} x_{2}}$.7	$.8(x)$.9
.5	.40	.60	.80
.6	.25	.50	.75
.7	.00	.33	.67
.8	-	.00	.50
.9	-	-	.00

MESSAGE
The DIFFERENCE SCORE IS Reliable when individual Differences in true change EXIST.

$$
\rho(D)=\frac{\sigma_{\Delta}^{2}}{\sigma_{\Delta}^{2}+\sigma_{\epsilon_{2}-\epsilon_{1}}^{2}}
$$

Values of $\rho(D) / \bar{\rho}(x)$ AND $\rho(D)$ WHEN $\rho_{8, \Delta}=0 \quad$ AND $\rho\left(x_{2}\right)=.9$

	$\rho\left(x_{1}\right)$		
$\rho_{1,112}$.6	.7	.8
$\rho(D) / \bar{\rho}(x)$			
.4	1.06	1.03	1.00
.6	.86	.88	.90
.8	.53	.60	.67
		$\rho(D)$	
.4	.79	.82	.85
.6	.65	.71	.76
.8	.40	.48	.57

VALUES OF $\rho(D) / \rho(x)$ AND $\rho(0)$ WHEN $\sigma_{x_{1}}=\sigma_{x_{2}}$ AND $p\left(x_{1}\right)=p\left(x_{2}\right)$

$$
D_{p}=X_{2 p}-X_{1 p}
$$

Is an unbiased estimate of

$$
\Delta_{p}=\xi_{2 p}^{\prime}-\xi_{1 p}^{\prime} .
$$

How Can an Unbiased Estimate be Unfair?

You can determine

 from(the correlation matrix for) the longitudinal data whether (or not)

> you are measuring the same thing over time

Myths Companion
$M 1$ individual growth $\xi_{p}(t)=f(\xi, t)$
proportional growth to asymp tote λ_{p}
Amantot Change

$$
\begin{aligned}
& A_{p}(t, t+c)=\left[\lambda_{p}-\xi_{p}(0)\right]\left[1-e^{\xi}(t)=\lambda_{p}-\left(\lambda_{p}-\xi_{p}(0)\right) e^{-\gamma_{p} t} .\right. \\
& \text { M2 } x_{i p}=\xi_{i p}+\varepsilon \text { (falli ble scoure, sce back) } \\
& D=x_{2}-x_{1}, E(D)=\xi_{2}-\xi_{1}
\end{aligned}
$$

$$
\begin{aligned}
& \text { individuel difficuancise }
\end{aligned}
$$

$193 \rho_{\xi(t) \xi(t+c)}$ on back, depands on choicic of for $\rho_{\varepsilon_{1}, \square}=0 \quad \rho_{\varepsilon_{1} \xi_{2}}=\left(1+\sigma_{\Delta}^{2} / \sigma_{\xi_{1}}^{2}\right)^{-1 / 2}$
$14 \quad \rho \xi\left(t_{1}\right) \theta$ on back depends on $t_{1}-t^{\circ}$

$$
\frac{E\left(\xi_{2} \mid \xi_{1}=C\right)-\mu_{\xi_{2}}}{\sigma_{\xi_{2}}}<\frac{C-\mu_{\xi_{1}}}{\sigma_{\xi_{1}}} \Rightarrow \rho_{\xi_{1} \xi_{2}}<1
$$

In metric it data $\left.E\left(\xi_{2}\right) \xi_{1}=c\right)-\mu_{\xi_{2}}<c-\mu_{\xi_{1}}$

$$
\Rightarrow \rho_{\xi, A}<0
$$

M6/7 resid change in sample $x_{2} \cdot x_{1}$ biaj
corrclation $\left.\rho\left[n \cdot e_{(t)}\right)\right] \omega$ poor rchacitith

$$
\Delta \cdot \xi\left(t_{1}\right)=\xi\left(t_{2}\right) \cdot \xi\left(t_{1}\right)
$$

LARGE INDIVIDUAL DIFFERENCES IN GROWTH LOWER THE BETWEEN -WAVE Correlations

EXAMPLE: FOR $\rho_{\xi_{1} \Delta}=0$

$$
\rho_{\xi_{1} \xi_{2}}=\frac{1}{\sqrt{1+\frac{\sigma_{\Delta}^{2}}{\sigma_{\xi_{1}}^{2}}}}
$$

$$
\begin{aligned}
& \rho_{57}=.94 \text { same? } \\
& \rho_{15}=.39 \text { different? } \\
& P_{17}=.05 \text { very "? } \\
& P_{08}=-.24 \text { opposite? }
\end{aligned}
$$

The correlation between change and
initial status is
a) Negative
b) Zero
c) Positive
d) All of the above

Myths Companion
$M 1$ individual growth $\xi_{p}(t)=f(\xi, t)$
proportional growth to asymp tote λ_{p}

$143 \rho_{\xi(t) \xi(t+c)}$ on back, depands in anoicio of for $\rho_{\xi_{1}, ~}=0 \quad \rho_{\varepsilon_{1} \xi_{2}}=\left(1+\sigma_{\Delta}^{2} / \sigma_{\xi_{1}}^{2}\right)^{-1 / 2}$

$$
\frac{E\left(\xi_{2} \mid \xi_{1}=C\right)-\mu_{\xi_{2}}}{\sigma_{\xi_{2}}}<\frac{c-\mu_{\xi_{1}}}{\sigma_{\xi_{1}}} \Rightarrow \rho_{\xi_{1} \xi_{2}}<1
$$

In metric ot data $\left.E\left(\xi_{2}\right) \xi_{1}=c\right)-\mu_{\xi_{2}}<c-\mu_{\xi_{1}}$

$$
\Rightarrow \rho_{\xi, A}<0
$$

M617 resid change in sample $x_{2} \cdot x_{1}$ biaj
corrclation $\rho[n \cdot e(t)] w$ por rchasithe

$$
\Delta \cdot \xi\left(t_{1}\right)=\xi\left(t_{2}\right) \cdot \xi\left(t_{1}\right)
$$

ExAMPLE: STRAIGHT-LINE GROWTH

Correlation between Change

and			
$I_{\text {initial }}$		Status	
	$P_{I}\left(t_{I}\right) \Delta$	$P_{X_{i}}\left(X_{i+c}-X_{i}\right)$	
		$c=1$	$c=3$
0	-.71	-.50	-.69
1	-.55	-.48	-.59
2	-.32	-.44	-.47
3	0	-.36	-.29
4	.32	-.25	.00
5	.55	-.12	.17
6	.71	-.02	.30
7	.80	.02	.42

Myths Companion
$M 1$ individual growth $\xi_{p}(t)=f(\xi, t)$
proportional growth to asymp tote λ_{p}

$$
\begin{aligned}
& \text { individuel diffarencicis } \\
& \text { Amantot Change } \\
& A_{p}(t, t+c)=\left[\lambda_{p}-\xi_{p}(0)\right]\left[\xi_{p}(t)=\lambda_{p}-\left(\lambda_{p}-\varepsilon_{p}(0)\right) e^{-\gamma_{p} t}\right. \\
& \text { M2 } \quad x_{i p}=\xi_{i p}+\varepsilon \text { (fallible scove, sce back) }
\end{aligned}
$$

$143 \rho_{\xi(t) \xi(t+c)}$ on back, depends in anoicie of for $\rho_{\xi_{1}, D}=0 \quad \rho_{\varepsilon_{1} \xi_{2}}=\left(1+\sigma_{\Delta}^{2} / \sigma_{\xi_{1}}^{2}\right)^{-1 / 2}$
$14 \rho_{\xi}\left(t_{1}\right) \theta$ on back dependo on $t_{1}-t^{\circ}$

$$
\begin{aligned}
& \text { M5 Standandized Tautology } \\
& \frac{E\left(\xi_{2} \mid \xi_{1}=c\right)-\mu_{\xi_{2}}}{\sigma_{\xi_{2}}}<\frac{c-\mu_{\xi_{1}}}{\sigma_{\xi_{1}}} \Rightarrow \rho_{\xi_{1} \xi_{2}}<1
\end{aligned}
$$

In metric ot dath $E\left(\xi_{2} \mid \xi_{1}=c\right)-\mu_{\xi_{2}}<c-\mu_{\xi_{1}}$

$$
\Rightarrow \rho_{\xi, A}<0
$$

M6/7 resid change in Jample $x_{2} \cdot x_{1}$ biaj
correlation $\rho\left[A \cdot \xi\left(t_{1}\right)\right] \omega$ porrchatithe

$$
\Delta \cdot \xi\left(t_{1}\right)=\xi\left(t_{2}\right) \cdot \xi\left(t_{1}\right)
$$

Regression Toward The Mean

$$
\begin{aligned}
& \frac{E\left(\xi_{2} \mid \xi_{1}=c\right)-\mu_{\xi_{2}}}{\sigma_{\xi_{2}}}<\frac{C-\mu_{\xi_{1}}}{\sigma_{\xi_{1}}} \\
& \Rightarrow \rho_{\xi_{1} \xi_{2}}<1 \\
& E\left(\xi_{2} \mid \xi_{1}=C\right)-\mu_{\xi_{2}}<C-\mu_{\xi_{1}} \\
& \Rightarrow \rho_{\xi_{1}, \Delta}<0
\end{aligned}
$$

$$
\begin{gathered}
\text { Residual } \\
\text { change measures } \\
\text { cure } \\
\text { what ails } \\
\text { the difference } \\
\text { score }
\end{gathered}
$$

Residual Change As a measure of change
TRUE RESIDUAL CHANGE

$$
\xi_{2 p}-\mu_{\xi_{2}}-\beta_{\xi_{2} \xi_{1}}\left(\xi_{1 p}-\mu_{\xi_{1}}\right)
$$

usual sample estimate

$$
\hat{R}_{p}=x_{2 p}-\bar{x}_{2}-\widehat{\beta}_{x_{2} x_{1}}\left(x_{1 p}-\bar{x}_{1}\right)
$$

PROPERTIES OF \hat{R}
BIAS? Y
Precision? Poor
RELIABILITY? $\approx \rho(D)$
LOGIC? HOW MUCH WOULD
PERSON P HAVE CHANGED IF EVERYONE HAD STARTED OUT EQUAL?

Myths Companion
$M 1$ individual growth $\xi_{p}(t)=f(\xi, t)$
proportional growth to asymp tote λ_{p}

Amantot Change

$$
\begin{aligned}
\operatorname{M2} \quad x_{i p}=\xi_{i p}+\varepsilon \quad \text { (fall ble scove, sec back) } \\
D=x_{2}-x_{1}, E(D)=\xi_{2}-\xi_{1}
\end{aligned}
$$

$\sigma_{\Delta}^{2}=\left(t_{2}-t_{1}\right)^{2} \sigma_{\sigma_{2}}^{2}$ remicis reliay.lity $\rho(D)=\frac{\sigma_{1}^{2}}{\sigma_{Q}^{2}+\sigma_{\varepsilon_{2}}^{2}-\varepsilon_{1}}$ individuel in in change
$143 \rho_{\xi(t)} \xi(t+c)$ on back, depands on onoric of for $\rho_{\xi_{1}, D}=0 \quad \rho_{\varepsilon_{1} \xi_{2}}=\left(1+\sigma_{\Delta}^{2} / \sigma_{\xi_{1}}^{2}\right)^{-1 / 2}$
$14 \rho_{\xi}\left(t_{1}\right) \theta$ on back dependo on $t_{1}-t^{\circ}$

$$
\begin{aligned}
& \frac{E\left(\xi_{2} \mid \xi_{1}=c\right)-\mu_{\xi_{2}}}{\sigma_{\xi_{2}}}<\frac{c-\mu_{\xi_{1}}}{\sigma_{\xi_{1}}} \Rightarrow \rho_{\xi_{1} \xi_{2}}<1
\end{aligned}
$$

In metric it data $\left.E\left(\xi_{2}\right) \xi_{1}=c\right)-\mu_{\xi_{2}}<c-\mu_{\xi_{1}}$
M6/7 resid change in Jample $x_{2} \cdot x_{1}$ biaj corrclation $\rho\left[A \cdot E\left(t_{1}\right)\right] \omega$ por rchatitite

$$
\Delta \cdot \xi\left(t_{1}\right)=\xi\left(t_{2}\right) \cdot \xi\left(t_{1}\right)
$$

Do These quantities reflect Systematic individual DIFFERENCES IN GROWTH?

FUNCTIONAL FORM	OF RESIDUAL CHANGE
LORD	CORRELATIONS
TIM	$\rho_{\theta W}$

Values of $P_{\left[\xi\left(t_{2}\right) \cdot g\left(t_{1}\right)\right] W}$ (TDM)

t_{1}	$p_{w \theta}=0$	$p_{w \theta}=.7$
0	.64	.92
1	.50	.92
2	.29	.85
3	0	.70
4	-.29	.47
5	-.50	.25
6	-.64	.07
7	-.73	-.06
8	-.78	-.15

The Way To investigate Correlates of Change IS TO MODEL INDIVIDUAL GROWTH and Then investigate SYSTEMATIC INDIVIDUAL DIFFERENCES IN GROWTH

MORAL

Cannot Assess Correlates Of Change By IGnoring Individual Growth.

Longitudinal Reasons to AVOID
 Structural Equation Models

Quantitative Social Science Seminar Series U.C. Berkeley, March 14, 1994
2. Structural Equation Models

Example: Stability / Change in Alienation (Jöreskog, $19 * *$)

Structural equation

$$
x_{2}=\alpha_{0}+\beta_{1} x_{1}+\beta_{2} w
$$

Exogenous influence on change

$$
\beta_{2}=\beta_{x\left(t_{2}\right) w \cdot x\left(t_{1}\right)}
$$

Jöreskog:
$\hat{\beta}_{2}<0 \Rightarrow$ "high SES reduces alienation"

Properties (Moments of Observables) of Collections of Growth Curves
for $\operatorname{nd} d P$

$$
\begin{equation*}
\xi_{p}(t)=\xi_{p}(0)+\theta_{p} t \tag{i}
\end{equation*}
$$

$p(p, 1, \ldots n)$

Corral change, initial status
exogenous var w

$$
P_{w}(t)=\frac{\left(t-t^{0}\right) \rho_{w \sigma}+k \rho_{w} \xi\left(t^{0}\right)}{\left[K^{2}+\left(t-t^{0}\right)^{2}\right]^{1 / 2}}
$$

where $t^{u}=t^{0}+k\left(\frac{\rho_{\omega} \theta}{\rho_{\omega \xi(t 0)}}\right) \quad t^{l}=t^{0}-k\left(\frac{\rho_{\omega \xi(0)}}{\rho_{\omega \theta}}\right)$
Week 1 example: $(1.64) \theta \sim U[1,9], \xi\left(t^{\circ}\right) \sim U[38,62]$

$$
t^{\circ}=2 \quad \sigma_{\theta}^{2}=5.333 \sigma_{\xi(t)}^{2}=48 \quad \rho_{\omega} \theta=0 \quad \rho_{\omega \xi} \xi 9=
$$

ut $_{\text {tunic }}$ ti $\quad X_{i p}=\xi_{i p}+\varepsilon \quad \varepsilon \sim\left(0, \sigma_{\varepsilon}^{2}\right)$ errors in week I ex $\sigma_{\varepsilon}^{2}=10$
$\beta_{x\left(t_{2}\right) w \cdot x\left(t_{t}\right)}$ for Straight-line
Growth

$$
\beta_{x\left(t_{2}\right) w \cdot x\left(t_{1}\right)}=\frac{c\left(\frac{\sigma_{x(y)}^{(v)}}{(1-\tau)}\left(\tau^{u}-t\right) \rho_{w x(\tau)}\right.}{(t-)^{2}+{x^{2}}^{2}-\rho_{w \theta}^{2}\left(t-\tau^{\ell}\right)^{2}}
$$

Figure 9
Plot of $\beta_{\xi(t+\tau) W \cdot \xi(t)}$ against time for straight-line growth. The value of $\tau \beta_{\theta W}$ is indicated at the dashed line.
respectively. As with the correlational measures, the most salient property of $\beta_{\xi\left(t_{I}+\tau\right) W \cdot \xi\left(t_{1}\right)}$ is the dependence on time of initial status.

For $\rho_{W \theta}=0,(25)$ becomes

$$
\begin{equation*}
\beta_{\xi(t+\tau) W \cdot \xi(t)}=\frac{-\tau\left(t-t^{\circ}\right) \rho_{W \xi\left(t^{\circ}\right)}\left[\sigma_{\xi\left(t^{\circ}\right)} / \sigma_{W}\right]}{\kappa^{2}\left(1-\rho_{W \xi\left(t^{\circ}\right)}^{2}\right)+\left(t-t^{\circ}\right)^{2}} \tag{27}
\end{equation*}
$$

The function in (27) equals zero for $t=t^{\circ}$ and has minimum and maximum at $t^{\circ} \pm \kappa[1$ $\left.-\rho_{W\left[\left(t_{0}\right)\right.}^{2}\right]^{1 / 2}$, respectively. Despite the specification that $\beta_{\theta W}=0, \beta_{\xi\left(t_{1}+\tau\right) W \cdot \xi(t)}$ will be positive or negative for t_{I} less than or greater than t°.

Exponential growth. Under the model for exogenous change of Coleman (1968, Equation 11.15), which is rewritten in our (5), the dependence of the regression coefficient on the choice of t_{I} disappears. Recall that Coleman's model is a special case of systematic individual differences in exponential growth with the restrictions $\gamma_{p}=\gamma$ and, especially, $\rho_{\lambda W}=1$. Under these restrictions (which cannot be expected to hold in practice), $\beta_{\xi(t+\tau) W} \cdot \xi(t)=\beta_{\lambda W}\left(1-e^{-\gamma \tau}\right)$.

Discussion

At least four purposes for studying change are prominent in the behavioral sciences: (a) the assessment of individual change, (b) the detection of correlates or predictors of change, (c) the comparison of change among experimental groups, and (d) the comparison of change among nonequivalent groups in quasiexperiments (see also Cronbach \& Furby, 1970, pp. 77-80). Individual change was the focus of Rogosa et al. (1982), and the present paper moves on to correlates of change. "Understanding Correlates of Change" means how to think about and explicitly formulate systematic individual differences in growth. This understanding (which is achieved by "Modeling Individual Differences in Growth") is a necessary first step in the development of statistical methods to guide the design and analysis of empirical research. A major consequence of this understanding is a call to abandon the teachings of the "Avoid Change at Any Cost" School of Longitudinal Research which have dominated the measurement of change literature. This paper demonstrates that explicit consideration of change-through the parameters of a model for individual growth-is absolutely essential for any serious treatment of correlates of change.

Straight-line Growth Example

$$
\tau=3 \quad K=3
$$

Values of $\beta_{x\left(t_{I}+5\right) w \cdot x\left(t_{I}\right)}$

t_{I}	$P_{w \theta}=0$	$P_{w \theta}=.7$
0	.85	.70
1	1.05	.85
2	1.15	1.0
3	0	1.2
4	-1.15	1.3
5	-1.05	1.1
6	-.85	.35
7	-.70	-.25
8	-.55	-.5

 40.938810
 47.359370
 52.705110
 30.452310
 43.646250
 41.155490
 44.151480
 38.159650
 37.675940
 45.300540
 39.369470
 36.663710
 53.398540
 59.354590
 53.139720
 44.901730
 41.786250
 38.245640
 47.235960
 53.571270
 35.542900
 37.543520
 37.065520
 32.398090
 45.216440
 35.671760
 38.301750
 52.613470
 38.362050
 45.139850
 53.819050
 49.455840
 56.285520
 49.588300
 41.448820
 47.417680
 56.998030
 41.060790
 Xi(3)
49.290530
51.584510
52.879780
55.448790
62.703510
46.340820
58.370030
49.262760
51.998020
46.594290
39.867320
54.382830
48.153540
43.751210
62.316440
62.802520
64.349090
58.824930
59.440230
48.980320
60.788930
67.708060
43.510950
50.248820
49.707010
44.689060
62.076580
47.421170
51.134650
55.517540
48.490300
51.435610
64.274460
61.424760
59.042180
57.577850
59.431220
57.421590
65.732350
43.543620
$\mathrm{Xi}(5)$
61.021930
57.514720
64.820760
63.538220
72.701910
62.229340
73.093820
57.370030
59.844550
55.028920
42.058700
63.465110
56.937610
50.838700
71.234350
66.250450
75.558460
72.748130
77.094210
59.714990
74.341890
81.844860
51.479000
62.954120
62.348510
56.980030
78.936720
59.170580
63.967540
58.421610
58.618560
57.731370
74.729870
73.393680
61.798830
65.567410
77.413640
67.425480
74.466660
46.026450

W
15.972470
15.377240
11.479020
16.889440
19.178340
11.818220
15.328750
13.208130
13.090430
10.315590
10.261310
15.598520
13.900920
13.525720
14.447020
20.158750
16.114490
15.057730
18.333810
13.772200
15.882300
18.253550
10.145410
9.461730
15.814920
11.604630
14.077550
12.186710
14.072240
16.679830
15.071560
13.942930
20. 399220
15.996710
17.467350
17.296230
15.857430
18.946520
18.896400
13.790020

Corresponding Data for Fallible Observations (X)				
	X(1)	X(3)	X(5)	W
1	37.516320	51.352380	59.447650	15.972470
2	45.127490	52.817920	61.646580	15.377240
3	35.146190	56.825750	66.150560	11.479020
4	44.125920	49.189990	64.570750	16.889440
5	52.742550	66.558240	70.488200	19.178340
6	30.429370	49.953630	64.290860	11.818220
7	45.855950	61.804990	68.040070	15.328750
8	41.085170	48.477920	56.037560	13.208130
9	45.596330	53.609550	56.391610	13.090430
10	41.640850	52.921170	53.426490	10.315590
11	40.553350	41.063000	42.669360	10.261310
12	43.596080	50.701220	61.301810	15.598520
13	40.330890	42.926600	56.823440	13.900920
14	36.468130	39.048250	55.981900	13.525720
15	50.935130	64.577550	73.268780	14.447020
16	56.389270	64.351740	66.465300	20.158750
17	54.820850	55.940590	78.981190	16.114490
18	46.234100	55.570820	69.208680	15.057730
19	40.338170	55.815210	79.839300	18.333810
20	39.782590	48.463580	61.588510	13.772200
21	45.568470	57.297970	76.471220	15.882300
22	50.794400	66.029400	82.140590	18.253550
23	36.556680	45.836010	41.518490	10.145410
24	39.484500	50.684350	57.499870	9.461730

Myths Data

DRogooa STAT 222 weck't
Timel-Time2 regressions
Example from Rogosa, D. R. (1995). Myths and methods: "Myths about longitudinal research," plus supplemental questions. In The analysis of change, J. M. Gottman, Ed. Hillsdale, New Jersey: Lawrence Erlbaum Associates, 3-65.
\qquad
> mtruesig\$theta $=$ signif((mtrue\$xi5
> mtruesig
$>\operatorname{mtruesig}_{\text {xii xis xis }}$ W theta Antuticial Data class pegu
measure ment of change examples

340.9452 .8864 .8211 .4805 .970 MC\&S \quad > summary(truereg1)

straight
Coefficients:

Residual standard error: 7.514 on 37 degrees of freedom Multiple R-squared: 0.3727, Adjusted R-squared: 0.33
F-statistic: 10.99 on 2 and $37 \mathrm{DF}, \mathrm{p}$-value: 0.0001792
1436.36 . $18.1556 .94-13.900-4.392$
$15 \quad 53.40 \quad 62.32 \quad 71.23 \quad 14.450 \quad 4.459$
$\begin{array}{llll}16 & 59.35 & 62.80 & 66.25 \quad 20.160 \\ 1.724\end{array}$
$17 \quad 53.14 \quad 64.35 \quad 75.56 \quad 16.110 \quad 5.605$
$18 \quad 44.90 \quad 58.82 \quad 72.75 \quad 15.060 \quad 6.962$
$1941.79 \quad 59.44 \quad 77.09 \quad 18.330 \quad 8.827$
$20 \quad 38.25 \quad 48.98 \quad 59.71 \quad 13.770 \quad 5.367$
$\begin{array}{llllll}21 & 47.24 & 60.79 & 74.34 & 15.880 & 6.776\end{array}$
$22 \quad 53.57 \quad 67.71 \quad 81.84 \quad 18.250 \quad 7.068$
$\begin{array}{llllll}23 & 35.54 & 43.51 & 51.48 & 10.150 & 3.984\end{array}$
$\begin{array}{lllll}24 & 37.54 & 50.25 & 62.95 & 9.462 \\ 6.353\end{array}$
$25 \quad 37.0749 .71 \quad 62.35 \quad 15.810 \quad 6.321$
$26 \quad 32.40 \quad 44.69 \quad 56.98 \quad 11.600 \quad 6.145$
$27 \quad 45.22 \quad 62.08 \quad 78.94 \quad 14.080 \quad 8.430$
$\begin{array}{llllll}28 & 35.67 & 47.42 & 59.17 & 12.190 & 5.875\end{array}$
$29 \quad 38.30 \quad 51.13 \quad 63.97 \quad 14.070 \quad 6.416$
$\begin{array}{llllll}30 & 52.61 & 55.52 & 58.42 & 16.680 & 1.452\end{array}$
$31 \quad 38.36 \quad 48.49 \quad 58.62 \quad 15.070 \quad 5.064$
$\begin{array}{llllll}32 & 45.14 & 51.44 & 57.73 & 13.940 & 3.148\end{array}$
$\begin{array}{llllll}33 & 53.82 & 64.27 & 74.73 & 20.400 & 5.228\end{array}$
$\begin{array}{llllll}34 & 49.46 & 61.42 & 73.39 & 16.000 & 5.984\end{array}$
$35 \quad 56.29 \quad 59.04 \quad 61.80 \quad 17.470 \quad 1.378$
$36 \quad 49.59 \quad 57.58 \quad 55.57 \quad 17.300 \quad 3.995$
$37 \quad 41.45 \quad 59.43 \quad 77.41 \quad 15.860 \quad 8.991$
$38 \quad 47.42 \quad 57.42 \quad 67.43 \quad 18.950 \quad 5.002$
$39 \quad 57.00 \quad 65.73 \quad 74.47 \quad 18.900 \quad 4.367$
$4041.0643 .54 \quad 46.03 \quad 13.7901 .241$
> pairs(~Xil + Xi + Xis + W) look real see pdf.
$>$ summary(truereg2)
Call: lm(formula $=$ Xi 5 $\sim W+X i 3$)
Coefficients:
Coefficients:

Residual standard error: 3.751 on 37 degrees of freedom Multiple R-squared: 0.8437 , Adjusted R-squared: 0.83
F-statistic: 99.83 on 2 and 37 DF, p-value: $1.232 \mathrm{e}-15$
$>$ summary (truediffreg) change A on ω call: $\operatorname{lm}(f o r m u l a=I(X i 5-x i 3) \sim w)$ no relation
Coefficients:

| | Estimate | Std. Error | value | $\operatorname{Pr}(>\|t\|)$ |
| :--- | ---: | ---: | ---: | ---: | ---: |
| (Intercept) | 10.086567 | 3.586436 | 2.812 | 0.00774 ** |
| W | -0.002139 | 0.235245 | -0.009 | 0.99279 |

W	-0.002139	0.235245	-0.009	0.99279

Residual standard error: 4.117 on 38 degrees of freedom Multiple R-squared: $2.176 \mathrm{e}-06$, Adjusted R-squared: -0.0 F-statistic: $8.267 \mathrm{e}-05$ on 1 and 38 DF , p-value: 0.9928
> cor(mtruesig)
$>\operatorname{cor}(W$, theta) [1] -0.001592367

create stracght-line data ω s.t. Pow $=0$ try out standard regression approaches using prior x_{i} s as predictor
\#\#Same result if Difference Score is Outcome rather than final status

\#First the true score regressions from
> truereglD $=\operatorname{lm}(I(X i 5-X i l) \sim W+X i l)$
> summary(truereg1D)
Call:
$\operatorname{lm}($ formula $=I(X i 5-X i l) \sim W+X i l)$
Residuals:

$$
\begin{array}{rrrrr}
\text { Min } & 1 Q & \text { Median } & 3 Q & \text { Max } \\
-15.692 & -4.348 & -1.051 & 6.406 & 15.788
\end{array}
$$

Coefficients:

	Estimate	Std. Error	t value $\operatorname{Pr}(>\|t\|)$			
(Intercept)	31.2139	7.5445	4.137	0.000194	***	
W	$\mathbf{1 . 5 0 0 2}$	0.6680	2.246	0.030788	*	\boldsymbol{M}
Xii	-0.7608	0.2588	-2.940	0.005624	**	

Signify, codes: $0{ }^{\prime *}$ "ff 0.001 '**' $^{\circ} 0.01$ '*' 0.05 '. 0.
Match oo eff, t-sta tivstios
freedom Multiple R-squared: 0.1894, Adjusted R-squared: 0.1. F-statistic: 4.323 on 2 and 37 DF, p-value: 0.02055

> truereg2D $=\operatorname{lm}(I(X i 5-X i 3) \sim W+X i 3)$
Call:
$\operatorname{lm}($ formula $=I($ Xi 5 - Xi $) \sim W+X i 3)$
Residuals:
$\begin{array}{rrrrr}\text { Min } & 1 Q & \text { Median } & 3 Q & \text { Max } \\ -7.26371 & -2.36848 & -0.07474 & 2.20751 & 8.12447\end{array}$
Coefficients:

Residual standard error: 3.751 on 37 degrees of freedom Multiple R-squared: 0.1918, Adjusted R-squared: 0.1481 F-statistic: 4.391 on 2 and 37 DF , p-value: 0.01945
, तotach(mtruesia)

Time1-Time2 regressions
Example from Rogosa, D. R. (1995). Myths and methods: "Myths about longitudinal Gottman, Ed. Hillsdale, New Jersey: Lawrence Erlbaum Associates, 3-65.
> mtruesig\$theta $=$ signif((mtrue\$Xi5 - mtrue\$Xi1)/4,4)

		Xi3		W	
	37.56	49.29	61.02	15.970	
2	45.65	51.58	57.51	15.380	
3	40.94	52.88	64.82	11.480	
4	47.36	55.45	63.54	16.890	
5	52	62	72.70	19.180	
6	30	46	62.23	11.820	
7	43.6	58.37	73.09	15.330	7.362
8	41.16	49.26	57.37	13.210	4.054
9	44	52.00	59	13	3
10	38.16	46	55	10.	4.217
11	37.68	39.87	42.06	10.260	
12	45	54	63	15.	
13	39.37	48.15	56.94	13.900	
14	36.66	43.75	50.84	13.530	
15	53.40	62.32	71.23	14.450	
	59.35	62.80	66.25	20	
17	53	64	75	16.11	5.605
18	44.90	58	72.75	15.060	
19	41.79	59	77.09	18	8.827
20	38.25	48.98	59.71	13.	5.367
21	47.24	60.79	74.34	15.880	6.776
22	53.57	67.71	81.84	18.250	
23		43.51		10.150	
	37	50.25	62.95	9.462	6.353
	37	49.71	62.35	15	
26	32.40	44.69	56	11.	
27	45.22	62.08	78.94	14.08	-
28	35.67	47.42	59.17	12.190	5
29	38.30	51.13	63.97	14.070	6
30	52.61	55.52	58.42	16.680	
31	38.36	48.49	58.62	15.070	
32	45.14	51.44	57.73	13.940	
	53.82	64.27	74.73	20.400	
34	49.46	61.42	73.39	16.000	5.984
35	56.29	59.04	61.80	17.470	78
36	49.59	57.58	65.57	17.300	3.995
37	41.45	59.43	77.41	15.860	91
38	47.42	57.42	67.43	18.950	02
39	57.00	65.73	74.47	18.900	
	41.06			13.790	

> pairs(~ Xi1 + Xi3 + Xi5 + W)
> cor(mtruesig)
Xi1 Xi3 Xi5

Xi1 1.00000000 .84221380 .5359036
$\begin{array}{llll}\mathrm{Xi3} & 0.8422138 & 1.0000000 & 0.9065331\end{array}$
Xi5 0.53590360 .90653311 .0000000
W $\quad 0.76617580 .76518900 .5985011$
$0.766175758-0.280851506$
$0.765188951 \quad 0.280906648$
0.5985010960 .659788513
theta $-0.28085150 .28090660 .6597885-0.0015923671 .000000000$
\#First the true score regressions from class $3 / 3$ handout

Call:
lm(formula $=I(X i 5-X i l) \sim W+X i l)$
Residuals:

Min	$1 Q$	Median	30	Max
-15.692	-4.348	-1.051	6.406	15.788

Coefficients:

Residual standard error: 7.514 on 37 degrees of freedom Multiple R-squared: $0.1894, \quad$ Adjusted R-squared: 0.1456 F-statistic: 4.323 on 2 and $37 \mathrm{DF}, \mathrm{p}$-value: 0.02055
$>$ truereg2D $=\operatorname{lm}(I(X i 5-X i 3)-W+X i 3)$
$>$ summary(truereg2D)

Call:
lm(formula $=I(X i 5-X i 3) \sim W+X i 3)$
Residuals:

Min	$1 Q$	Median	$3 Q$	Max
-7.26371	-2.36848	-0.07474	2.20751	8.12447

Coefficients:
Estimate Std. Error t value $\operatorname{Pr}(>|t|)$

Signif. codes: 0 '***' $0.001{ }^{\prime * * '} 0.01{ }^{\prime * \prime} 0.05$ '. 0.1 ' 1
Residual standard error: 3.751 on 37 degrees of freedom Multiple R-squared: 0.1918, Adjusted R-squared: 0.1481 F-statistic: 4.391 on 2 and $37 \mathrm{DF}, \mathrm{p}$-value: 0.01945

Demonstration:
time 1, time 2 Regressions $4 / 4, w$
D on y, w same as 1_{2} on $11, w$ coefficients for ω in population or sample, perfect or fallible measurement

$$
\text { coif } \beta_{D \omega \cdot} y_{1}=\beta_{D\left(\omega \cdot y_{1}\right)}=\frac{\operatorname{Cov}\left(y_{2}-y_{1}, \omega-\beta_{\omega} y_{1} y_{1}\right)}{\operatorname{Var}\left(\omega \cdot y_{1}\right)}
$$

(Note: $\left.\beta_{w y} \operatorname{Vaw}\left(Y_{1}\right)=\operatorname{Cov}\left(y_{1}, w\right)\right)$

$$
\begin{aligned}
& =\frac{\operatorname{Cov}\left(Y_{2}, \omega\right)-\beta_{\omega} Y_{1} \operatorname{Cov}\left(Y_{1}, Y_{2}\right)-\operatorname{Cov}\left(Y_{1}, \omega\right)+\beta_{\omega y_{1}} V_{1}\left(Y_{1}\right)}{\operatorname{Vav}\left(\omega \cdot Y_{1}\right)} \\
& =\frac{\operatorname{Cov}\left(y_{2}, \omega\right)-\beta \omega y_{1} \operatorname{Cov}\left(y_{1}, y_{2}\right)}{\operatorname{Var}\left(\omega \cdot y_{1}\right)} \\
& =\frac{\operatorname{Cov}\left(y_{2}, w \cdot y_{1}\right)}{\operatorname{var}\left(w \cdot y_{1}\right)}=\beta_{y_{2}}\left(w \cdot y_{1}\right)=\beta_{y_{2} w \cdot y_{1}} \\
& \text { brute force, } \\
& \text { guided ways } \\
& \text { see STAT } 209 \\
& \text { week } 1 \\
& \text { to This } \\
& \begin{array}{l}
\text { adjusted } \\
\text { variables }
\end{array}
\end{aligned}
$$

\#Stat222, Week 1 example, Rogosa R-session 4/8/12
R version 2.14 .1 (2011-12-22)
Copyright (C) 2011 The R Foundation for Statistical Computing
ISBN 3-900051-07-0
Platform: x86_64-pc-mingw32/x64 (64-bit)
> week1Xi = read.table(file="D:
drr12
stat222
week1
mythdata_Xi", header = T)
\#I took the web page and commented out via "\#" all the lines except the Xi-data (40 row
\# I named the observation columns as shown below
> head(week1Xi)

	Xi.1	Xi.3	Xi.5	W
1	37.55913	49.29053	61.02193	15.97247
2	45.65429	51.58451	57.51472	15.37724
3	40.93881	52.87978	64.82076	11.47902
4	47.35937	55.44879	63.53822	16.88944
5	52.70511	62.70351	72.70191	19.17834
6	30.45231	46.34082	62.22934	11.81822

> week1Xi\$theta = (week1Xi\$Xi.5 - week1Xi\$Xi.1)/4 \# create the "theta" column in the we
\# this works only because the "Xi" data fall exactly on a straight-line (illustrated be > head(week1Xi)
Xi. 1 Xi. 3 Xi. 5 W theta
$137.5591349 .2905361 .0219315 .97247 \quad 5.865700$
245.6542951 .5845157 .5147215 .377242 .965107
340.9388152 .8797864 .8207611 .479025 .970488
447.3593755 .4487963 .5382216 .889444 .044713
$552.7051162 .70351 \quad 72.7019119 .178344 .999200$
630.4523146 .3408262 .2293411 .818227 .944257
> attach(week1Xi)
> cor(W,theta)
[1] -0.001411346
> cor(week1Xi)
Xi. Xi.3 Xi. 1 W W theta
Xi.1 $1.0000000 .84217140 .5357932 \quad 0.765952711$-0.280944258
$\begin{array}{llllll}x i .3 & 0.8421714 & 1.0000000 & 0.9065112 & 0.765172576 & 0.280889494\end{array}$
$\begin{array}{llllll}\text { Xi. } 5 \quad 0.5357932 & 0.9065112 & 1.0000000 & 0.598471157 & 0.659814293\end{array}$
$\begin{array}{lllllll}\mathrm{W} & 0.7659527 & 0.7651726 & 0.5984712 & 1.000000000 & -0.001411346\end{array}$
theta $-0.28094430 .28088950 .6598143-0.0014113461 .000000000$
> pairs(week1Xi)
$>$ pairs(weeklXi, $p c h=20)$ \# this is the plot that is posted in the plot/link
> \#do the regressions from the week 1 handout
> truereg1 = lm(Xi.5 ~W + Xi.1)
$>$ truereg2 $=\operatorname{lm}(X i .5 \sim W+X i .3)$
$>$ truereg $3=\operatorname{lm}($ theta $\sim \mathrm{W}$)
> summary(truereg1)

Call:
lm(formula $=$ Xi. $5 \sim \mathrm{~W}+\mathrm{Xi} .1$)
Residuals:

Min	$1 Q$	Median	$3 Q$	Max
-15.697	-4.351	-1.048	6.413	15.788

Coefficients:
Estimate Std. Error t value $\operatorname{Pr}(>|t|)$

(Intercept)	31.2134	7.5457	4.137	0.000195	***
W	1.5004	0.6678	2.247	0.030712	*
Xi. 1	0.2392	0.2587	0.925	0.361216	
Signif. cod	: 0 ،**	0.001 ،	0.01	**' 0.05	-
Residual standard error: 7.514 on 37 degrees of freedom Multiple R-squared: 0.3727, Adjusted R-squared: 0.3387 F-statistic: 10.99 on 2 and 37 DF, p-value: 0.0001794					
> summary(truereg2)					
lm(formula $=$ Xi.5 \sim W + Xi.3)					

Residuals:

Min	$1 Q$	Median	$3 Q$	Max
-7.2692	-2.3773	-0.0794	2.2062	8.1319

Coefficients:

Residual standard error: 3.752 on 37 degrees of freedom Multiple R-squared: 0.8436, Adjusted R-squared: 0.8352
F-statistic: 99.8 on 2 and 37 DF, p-value: $1.238 \mathrm{e}-15$
> summary(truereg3)
Call:
lm(formula $=$ theta $\sim \mathrm{W}$)
Residuals:

Min	$1 Q$	Median	$3 Q$	Max
-3.9362	-1.0344	0.0081	1.3009	3.9650

Coefficients:

Residual standard error: 2.059 on 38 degrees of freedom Multiple R-squared: 1.992e-06, Adjusted R-squared: -0.02631
F-statistic: $7.569 \mathrm{e}-05$ on 1 and 38 DF , p-value: 0.9931
> confint(truereg1) \#I'm sure you did this sort of thing in your intro courses
2.5 \% 97.5 \%
(Intercept) 15.924393446 .5023390
W $0.1472643 \quad 2.8534413$
Xi. $1 \quad-0.2849891 \quad 0.7632945$
> confint(truereg2)
$2.5 \% \quad 97.5 \%$
(Intercept) -8.545741 9.91166842
W -1.431584 -0.08237203

```
xi.3 1.120864 1.64351319
> confint(truereg3)
                    2.5 % 97.5 %
(Intercept) 1.4117397 8.6730369
W -0.2391757 0.2371287
> trueregla = lm(theta ~ W + Xi.1)
> truereg2a = lm(theta ~ W + Xi.3)
> summary(trueregla) # do the lower frame examples with change as the outcome
    # because I used rate rather than amount of change to match coeefs you need to scale
Call:
lm(formula = theta ~ W + Xi.1)
Residuals:
\begin{tabular}{rrrrr} 
Min & \(1 Q\) & Median & \(3 Q\) & Max \\
-3.9242 & -1.0879 & -0.2619 & 1.6032 & 3.9471
\end{tabular}
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
\begin{tabular}{lrrrrr} 
(Intercept) & 7.80334 & 1.88642 & 4.137 & 0.000195 & *** \\
W & 0.37509 & 0.16695 & 2.247 & 0.030712 * \\
Xi.1 & -0.19021 & 0.06467 & -2.941 & 0.005610 **
\end{tabular}
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1.879 on 37 degrees of freedom
Multiple R-squared: 0.1895, Adjusted R-squared: 0.1457
F-statistic: 4.325 on 2 and 37 DF, p-value: 0.02051
> summary(truereg2a)
Call:
lm(formula = theta ~ W + Xi.3)
Residuals:
\begin{tabular}{rrrrr} 
Min & \(1 Q\) & Median & \(3 Q\) & Max \\
-3.6346 & -1.1886 & -0.0397 & 1.1031 & 4.0660
\end{tabular}
Coefficients:
Estimate Std. Error \(t\) value \(\operatorname{Pr}(>|t|)\)
\begin{tabular}{lrrrrr} 
(Intercept) & 0.34148 & 2.27735 & 0.150 & 0.8816 & \\
W & -0.37849 & 0.16647 & -2.274 & \(0.0289 \quad\) * \\
Xi.3 & 0.19109 & 0.06449 & 2.963 & 0.0053
\end{tabular} **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1.876 on 37 degrees of freedom
Multiple R-squared: 0.1918, Adjusted R-squared: 0.1481
F-statistic: 4.391 on 2 and 37 DF, p-value: 0.01945
> confint(trueregla)
                            2.5 % 97.5 %
(Intercept) 3.98109835 11.62558475
W 0.03681608 0.71336033
xi.1 -0.32124729 -0.05917636
> confint(truereg2a)
                            2.5 % 97.5 %
(Intercept) -4.27286705 4.95583457
W -0.71579184 -0.04118593
Xi.3 0.06043203 0.32175647
```


Metaanalysis of the relationship between violent video game play and physical aggression over time

Anna T. Prescott ${ }^{\text {a }}$, James D. Sargent ${ }^{\text {b }}$, and Jay G. Hull ${ }^{\text {a,1 }}$
${ }^{\text {a }}$ Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH 03755; and ${ }^{\text {b }}$ Department of Pediatrics, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755

Edited by David E. Meyer, University of Michigan, Ann Arbor, MI, and approved August 10, 2017 (received for review August 27, 2016)

Abstract

To clarify and quantify the influence of video game violence (VGV) on aggressive behavior, we conducted a metaanalysis of all prospective studies to date that assessed the relation between exposure to VGV and subsequent overt physical aggression. The search strategy identified 24 studies with over 17,000 participants and time lags ranging from 3 months to 4 years. The samples comprised various nationalities and ethnicities with mean ages from 9 to 19 years. For each study we obtained the standardized regression coefficient for the prospective effect of VGV on subsequent aggression, controlling for baseline aggression. VGV was related to aggression using both fixed $[\beta=0.113,95 \% \mathrm{Cl}=(0.098$, $0.128)]$ and random effects models $[\beta=0.106(0.078,0.134)$]. When all available covariates were included, the size of the effect remained significant for both models $[\beta=0.080(0.065,0.094)$ and $\beta=0.078$ ($0.053,0.102$), respectively]. No evidence of publication bias was found. Ethnicity was a statistically significant moderator for the fixed-effects models ($P \leq 0.011$) but not for the random-effects models. Stratified analyses indicated the effect was largest among Whites, intermediate among Asians, and nonsignificant among Hispanics. Discussion focuses on the implications of such findings for current debates regarding the effects of violent video games on physical aggression.

video games | aggression | metaanalysis | ethnicity longitudinal

Acontroversy has developed over the relation of violent video game play and aggression (1-4). Whereas the majority of those who conduct research on this topic argue that playing such games increases aggressive behavior, a vocal minority has argued that the relation of game play and real-world aggressive behavior is at best overstated and at worst spurious. The controversy has had important real-world implications. In 2011, the US Supreme Court struck down a California statute designed to limit purchases and rentals of extremely violent video games by children (5). The majority opinion expressed skepticism about the importance of effects of violent video games, likening them to a "harmless pastime" (5).

Violent Video Game Play and Aggression

The case that violent video game play increases aggressive behavior has been made most forcefully by Anderson et al. (6; see also refs. 7 and 8). Specifically, these authors undertook a comprehensive metaanalysis of the literature on the impact of violent video game play on six categories of aggressive response: cognition, affect, arousal, empathy/sensitization to violence, overt aggressive behavior, and overt prosocial behavior. Their metaanalysis examined effects from over 130 research reports based on over 130,000 participants. On the basis of these analyses, the authors concluded that violent video game play is positively associated with aggressive behavior, aggressive cognition, and aggressive affect, as well as negatively associated with empathy for victims of violence and with prosocial behavior. Furthermore, the authors concluded that these effects are statistically reliable in experimental, cross-sectional, and longitudinal studies, are observed across cultures, gender, and game types (e.g., first vs. third person perspective; human vs. nonhuman targets; and so forth), and that methodologically superior studies
tended to yield larger effects. A more recent metaanalysis by Greitemeyer and Mügge (9) came to similar conclusions.

Although hailed by some as conclusively demonstrating a link between violent video game play and aggression (7), the Anderson et al. (6) metaanalysis did not decrease skepticism among a vocal minority of researchers (10). In a wide range of articles, Ferguson (2, 11-16) has leveled four criticisms at research purporting to show that video game violence (VGV) increases real-world aggression: (i) many studies that support such a link use measures of "nonserious aggression" (e.g., accessibility of aggression related words, aggression related feelings) that inflate effect-size estimates; (ii) many studies do not include important covariates as statistical controls and hence any observed effects may be spurious consequences of third variable relationships; (iii) there is a bias to publish studies supporting a VGV \rightarrow aggression link as opposed to those reporting a null effect; and (iv) even if one accepts the existence of a VGV \rightarrow aggression relationship, the estimated effect size typically reported is exceedingly weak. Despite the fact that these arguments have been vigorously rebutted by Anderson and his colleagues (8), Ferguson and his colleagues have continued to stand by their critique $(2,15,17,18)$. With respect to the critiques raised by Ferguson et al. (19-21), it is noteworthy that these researchers have conducted three rigorous longitudinal studies that have found no significant relationship between violent video game play and aggression. They attribute these noneffects in part to: (i) using measures of "serious" aggression (e.g., overt physical aggression), and (ii) including appropriate control covariates.

Ethnicity and Game Play

Some evidence exists supporting the potential of ethnicity and culture to moderate VGV effects. Anderson et al. (6) noted in their metaanalysis of aggressive behavior in longitudinal designs that the VGV effect was somewhat larger in Western than Eastern cultures and this difference approached statistical significance $(P=0.07)$. At the same time, in these comparisons cultural differences were confounded with variation in research designs, such that "it was unclear whether the difference should be attributed to cultural differences in vulnerability or to the use of different measures" (6).

The potential for ethnicity to moderate the effects of video game exposure on aggression was corroborated by Ferguson (15) in his own recent metaanalysis. In that work, Ferguson found a statistically significant association between exposure to video

[^1]
Mere Visual Perception of Other People's Disease Symptoms Facilitates a More Aggressive Immune Response

Mark Schaller, Gregory E. Miller, Will M. Gervais, Sarah Yager, and Edith Chen
University of British Columbia

Abstract

An experiment $(N=28)$ tested the hypothesis that the mere visual perception of disease-connoting cues promotes a more aggressive immune response. Participants were exposed either to photographs depicting symptoms of infectious disease or to photographs depicting guns. After incubation with a model bacterial stimulus, participants' white blood cells produced higher levels of the proinflammatory cytokine interleukin-6 (IL-6) in the infectious-disease condition, compared with the control (guns) condition. These results provide the first empirical evidence that visual perception of other people's symptoms may cause the immune system to respond more aggressively to infection. Adaptive origins and functional implications are discussed.

Keywords

disease, health, immunity, perception, threat
Received 9/I I/09; Revision accepted 10/30/09

People are sensitive to visual stimuli connoting the potential presence of infectious pathogens in others. These stimuli include anomalous morphological and behavioral characteristics (e.g., skin discolorations, sneezing) that suggest infection with disease-causing microorganisms. When perceived, these stimuli trigger psychological responses-such as disgust and the activation of aversive cognitions into working memory-that inhibit interpersonal contact (e.g., Curtis, Aunger, \& Rabie, 2004; Oaten, Stevenson, \& Case, 2009; Park, Faulkner, \& Schaller, 2003; Park, Schaller, \& Crandall, 2007). These perceptual processes are part of an integrated set of psychological mechanisms that facilitate prophylactic behavioral defense against pathogens-a sort of behavioral imтипе system (Schaller \& Duncan, 2007). Previously unexplored, however, is the intriguing possibility that these processes might also have an influence on the real immune system.

In a recent review article on disgust as a disease-avoidance mechanism, Oaten et al. (2009) suggested that "immune function, especially the innate (i.e., rapid) component, may be directly mobilized by cues that are disgust-evoking," but also noted that "as yet there are no data in humans to confirm or refute this possibility" (p. 315). Here, we report a study that empirically tested (and supports) the specific hypothesis that
mere visual perception of other people's disease-connoting cues can cause the immune system to respond more vigorously to microbial stimuli that connote infection.

This hypothesis is plausible on functional grounds. Visual perception of other people's apparent symptoms of infection implies one's own immediate vulnerability to pathogen infection. To the extent that visual perception of such stimuli influences perceivers' own immune functioning (by causing perceivers' immune cells to respond more aggressively if, or when, such infection occurs), this response phenomenon may reduce the likelihood of the infection's becoming established.

The hypothesis is plausible on mechanistic grounds as well. There is abundant evidence that immune responses (e.g., the production of proinflammatory cytokines) can be facilitated by stressful psychological experiences. These effects are mediated by hormones such as cortisol and norepinephrine, which are released when people appraise situations as threatening, and subsequently bind to receptors on immune cells (Cohen, Doyle, \& Skoner, 1999; Kiecolt-Glaser et al., 2003;

[^2]Table I. Mean Stimulated Production of Interleukin-6 (IL-6) and Self-Reported Mood Before and After the Guns and Disease Slide Shows

Measure	Guns slide show	Disease slide show
Stimulated IL-6		
\quad Pretest $(\mathrm{pg} / \mathrm{ml})$	$32,002(29,974)$	$22,320(14,672)$
Posttest $(\mathrm{pg} / \mathrm{ml})$	$33,964(30,725)$	$26,814(15,77 \mathrm{I})$
Change $(\mathrm{pg} / \mathrm{ml})$	$1,962(3,790)$	$4,494(8,249)$
\quad Change $(\%)$	$6.62(20.5 \mathrm{I})$	$23.62(31.74)$
Self-reported mood		
\quad Stressed	$1.57(0.94)$	$1.24(0.96)$
Relaxed	$1.62(1.18)$	$1.67(1.13)$
Scared	$1.38(1.1 \mathrm{I})$	$0.88(0.89)$
Disgusted	$1.52(1.19)$	$1.64(1.17)$

Note: Standard deviations are given in parentheses. Mood was assessed after the slide show only.
disease condition (see Table 1). Does this difference reflect a failure of randomization? It appears not. In addition to the primary measures described earlier, all participants completed a battery of questionnaires assessing dispositional tendencies, including the Big Five personality traits (agreeableness, conscientiousness, extraversion, neuroticism, and openness), as well as six specific traits relevant to perceptions of threat and disease (e.g., perceived vulnerability to disease, health locus of control). On none of these traits was there a significant difference between subjects in the guns and disease conditions (all $p \mathrm{~s} \geq .10$). (Nor did any of these traits significantly predict changes in stimulated IL-6; because of these noneffects, the trait measures are not discussed further in this article.) Furthermore, the difference between slide-show conditions in pretest levels of stimulated IL-6 was nonsignificant ($p=.288$), and pretest values of stimulated IL-6 had no meaningful relation to the percentage of change in stimulated IL-6 ($r \mathrm{~s}=-.03$ and -.18 in the guns and disease conditions, respectively; both $p \mathrm{~s}>.54$). Most important, the significant between-conditions difference in relative pretest-to-posttest change in stimulated IL-6 (revealed by the 2×2 ANOVA reported earlier) remained significant even when we statistically controlled for pretest values of stimulated IL-6 ($p=.004$).

Can this latter difference be attributed to greater subjective

Guns, Testosterone, and Aggression

An Experimental Test of a Mediational Hypothesis

Jennifer Klinesmith, Tim Kasser, and Francis T. McAndrew
Knox College

Abstract

We tested whether interacting with a gun increased testosterone levels and later aggressive behavior. Thirty male college students provided a saliva sample (for testosterone assay), interacted with either a gun or a children's toy for 15 min , and then provided another saliva sample. Next, subjects added as much hot sauce as they wanted to a cup of water they believed another subject would have to drink. Males who interacted with the gun showed significantly greater increases in testosterone and added more hot sauce to the water than did those who interacted with the children's toy. Moreover, increases in testosterone partially mediated the effects of interacting with the gun on this aggressive behavior.

Substantial evidence suggests that aggression can be increased by the presence of weapons in the environment and by the hormone testosterone. Several studies show that the presence of aggressive environmental cues such as weapons can increase the accessibility of hostile, aggressive thoughts and lead to more aggressive behavior (Anderson, Benjamin, \& Bartholow, 1998; Bartholow, Anderson, Carnagey, \& Benjamin, 2005; Berkowitz \& LePage, 1967; Bettencourt \& Kernahan, 1997; Killias \& Haas, 2002). Regarding testosterone, in animal species ranging from chickens to monkeys, the injection of this hormone increases aggressiveness and social dominance behavior, regardless of whether the animals are males or females (Ellis, 1986); in humans, however, the results are more mixed, with many laboratory and field studies revealing strong positive relations between testosterone and levels of restlessness, tenseness, and tendency toward violence (Archer, 1994; Campbell, Muncer, \& Odber, 1997; Dabbs, Carr, Frady, \& Riad, 1995; Dabbs, Jurkovic, \& Frady, 1991) and other studies failing to

[^3]replicate such effects (Archer, 1991; Archer, Birring, \& Wu, 1998; O'Connor, Archer, Hair, \& Wu, 2001; Rowe, Maughan, Worthman, Costello, \& Angold, 2004).

Surprisingly, we were unable to find any studies that examined whether testosterone and the presence of a weapon might work together to increase aggressive behavior. Perhaps the presence of a stimulus such as a gun triggers increases in testosterone levels, which in turn increase aggressive behavior. Such a chain of events would be predicted by the challenge hypothesis developed by Wingfield, Hegner, Dufty, and Ball (1990) to explain aggressive behavior in male pair-bonded birds. According to this hypothesis, testosterone rises in response to situational cues that represent either a threat to a male's status or a signal that competition with other males is imminent; such increases in testosterone then facilitate whatever competitive behaviors (including potentially aggressive responses) are necessary for meeting the challenge. The challenge hypothesis has been supported by studies across a wide range of vertebrate species (Cavigelli \& Pereira, 2000; Ferree, Wikelski, \& Anderson, 2004; Hirschenhauser, Taborsky, Oliveira, Canario, \& Oliveira, 2004; Muller \& Wrangham, 2004); most studies in humans have focused on how males' testosterone levels rise and fall depending on success or failure in competitions (Archer, 1991; Booth, Shelley, Mazur, Tharp, \& Kittok, 1989; Gladue, Boechler, \& McCaul, 1989; Mazur, Booth, \& Dabbs, 1992; Mazur \& Lamb, 1980) or in response to insults (Cohen, Nisbett, Bowdle, \& Schwarz, 1996; see Archer, 2006, for a review of the applicability of the challenge hypothesis to humans).
In this study, we examined whether the presence of a gun (vs. a control object) might act as a stimulus signaling competition and a threat to status; if so, according to the challenge hypothesis, it should cause increases in males' testosterone levels, which in turn should increase their aggressive behavior. We assessed males' testosterone levels both before and after interacting with a gun or a children's toy; to measure aggression, we adapted a method developed by Lieberman, Solomon, Greenberg, and

McGregor (1999) that gives subjects the opportunity to anonymously put hot sauce in a cup of water that they believe another person will have to drink. We hypothesized that males who interacted with the gun would show both a greater increase in testosterone levels and more aggression than would males who interacted with the children's toy. We also hypothesized that changes in testosterone levels would be correlated with aggression levels and would indeed mediate the effects of interacting with a gun on later aggressive behavior.

METHOD

Subjects

Subjects were 30 male college students (age range: 18-22) who received extra course credit or a small monetary reward for their participation. All subjects were run during the afternoon or early evening.

Procedure and Materials

When recruited, subjects were informed that the study would examine taste sensitivity in males and that they would therefore need to provide saliva for hormone analysis; subjects were asked not to eat, drink, smoke, or brush their teeth for 1 hr prior to testing in order to minimize impurities in the saliva samples. When subjects arrived at the lab, a female experimenter confirmed that the subjects had indeed followed these instructions before she administered consent procedures. Next, participants provided an approximately $6-\mathrm{ml}$ sample of saliva by spitting into a cup; this saliva was used to assess baseline, or Time 1 , testosterone levels.

All subjects were then led into a room containing a television, a chair, and a table with an object and some paper on it. For experimental subjects, the object was a pellet gun identical in size, shape, and feel to a Desert Eagle automatic handgun; for control subjects, the object was the children's game Mouse Trap ${ }^{\text {mM }}$. Subjects were told that the study was investigating whether taste sensitivity was associated with the attention to detail required for creating instructions concerning the object. Subjects were therefore asked to spend 15 min handling the object and writing a set of instructions about how to assemble and disassemble it; a drawing of the object was also provided for subjects to label the object's parts. The handgun and children's game were similar in number and complexity of parts.
After 15 min , the experimenter reentered the room, asked the subject to stop working on the instructions, and obtained a Time 2 saliva sample from the subject. The subject was told he would next perform the taste-sensitivity portion of the study. He was given a cup filled with 85 g of water and a single drop of Frank's Red Hot Sauce. The subject was told that the sample had been prepared by a previous subject, was instructed to take a sip of the sample, and was then asked to rate the taste of the sample on a scale provided.

The experimenter left and then returned with a tray containing a cup of 85 g of water, a nearly full bottle of Frank's Red Hot Sauce, and a lid. The subject was asked to prepare a sample for the next subject by placing as much hot sauce in the water as he wanted. He was assured that neither the person who drank it nor the experimenter would know how much hot sauce he had put in the water, as the lid was to be put on the cup after the hot sauce was added. The experimenter then left the room, and the subject signaled when he was finished adding the hot sauce. (Throughout this process, the gun or the game remained in the room.) The cup was then removed from the room, and the experimenter weighed it again to obtain a measure of the amount of hot sauce, in grams, the subject had added to the water. This served as our primary measure of aggression (see Lieberman et al., 1999).

Because of the potentially arousing nature of the experiment, we wanted to ensure that all subjects were reasonably calm when they left the lab. Therefore, all subjects next watched a relaxing video of nature scenes and classical music. Given that subjects had been deceived, we next debriefed them, emphasizing that they should not feel badly about any aggressive behavior they exhibited. Interestingly, several subjects were disappointed when told that the sample of hot sauce and water they had prepared would not actually be given to the next subject. No subjects expressed suspicion as to the true nature of the study.

Testosterone Levels

Time 1 and Time 2 saliva samples were stored for 24 hr at room temperature, centrifuged, and then frozen at $-20^{\circ} \mathrm{C}$ until the time of the assay (Erikkson \& Von Der Pahlen, 2002). The samples were then brought to room temperature, transferred to Eppendorf tubes, centrifuged for 15 min at $3,000 \mathrm{rpm}$ to remove debris, and then assayed in duplicate using a commercially available microwell kit for testosterone level (Salimetrics, LLC, State College, PA). All samples were assayed in house in a single batch using a standard radioimmunoassay (RIA) procedure under the supervision of an experienced RIA technician; at both Time 1 and Time 2, the duplicates were averaged to yield our measures of testosterone level. The intra-assay coefficient of variation for subjects was 5.3%, and the sensitivity of the assay was less than $1.5 \mathrm{pg} / \mathrm{ml}$ from zero for men. Mean Time 1 and Time 2 testosterone levels were $222.59 \mathrm{pg} / \mathrm{ml}(S D=97.17)$ and $253.92 \mathrm{pg} / \mathrm{ml}(S D=98.32)$, respectively. We subtracted each subject's Time 1 level from his Time 2 level to obtain a measure of change in testosterone.

RESULTS

Our first hypothesis was confirmed: Subjects who interacted with the handgun showed a greater increase in testosterone from Time 1 to Time 2 (mean change $=62.05 \mathrm{pg} / \mathrm{ml}, S D=48.86$) than did those who interacted with the children's game (mean

Pre-post, 2 groups
stat
week
© The American Statistician, November 1980, Vol. 34, No. 4

1. Pre and Post Maximal Rate of Urea Synthesis Level (mg urea N/hr/kg BW ${ }^{3 / 4}$) and Sample Cell Means, by Group

Group	Subject	Pres	Post
Selective Shunt	1	51	48
(new operation)	2	35	55
	3	66	60
	4	40	35
	5	39	36
	6	46	43
	7	52	46
Mean	8	42	54
Nonselective Shunt	9	$\hat{\mu}_{11}=46.375$	$\hat{\mu}_{12}=47.125$
(standard operation)	10	34	16
	11	40	36
	12	34	16
	13	36	18
	14	38	32
	15	44	14
	16	50	20
	17	60	43
	18	63	45
	19	50	67
	20	42	36
	21	43	34

Growth Curves (Group) $T=4$

In this section, The American Statistician publishes articles and notes of interest to teachers of the first mathematical statistics course and of applied statistics courses. To be suitable for this
section, articles and notes should be useful to a substantial number of teachers of such a course or should have the potential for fundamentally affecting the way in which the course is taught.

Comparative Analyses of Pretest-Posttest Research Designs

DONNA R. BROGAN AND MICHAEL H. KUTNER*

Abstract

Two common methods of analyzing data from a two-group pretestposttest research design are (a) two-sample t test on the difference score between pretest and posttest and (b) repeated-measures/ split-plot analysis of variance. The repeated-measures/split-plot analysis subsumes the t test analysis, although the former requires more assumptions to be satisfied. A numerical example is given to illustrate some of the equivalences of the two methods of analysis. The investigator should choose the method of analysis based on the research objective(s).

KEY WORDS: Repeated-measures/split-plot analysis; t test; Pre-test-posttest designs.

1. INTRODUCTION

A common research design is the two-group pretest/ posttest design with one dependent variable where subjects are not matched and may or may not be randomly assigned to the two groups (Cook and Campbell 1979). When the two groups are not formed by random assignment of subjects, a random sample from each of the two groups is necessary. This design can be extended to more than two groups; an example is the comparison of several different treatments with each other or with a control group in which each group is measured on a pretest and posttest.

The statistical analysis for these designs can be approached from several viewpoints. If the dependent variable is measured on an interval or ratio scale, a common analysis is to define a difference score for each subject (posttest minus pretest or vice versa) or a relative difference measure (the difference divided by the pretest) and then test the null hypothesis that the means or medians of the (relative) differences are equal for each group. In many cases the t test or analysis of variance is used, although nonparametric tests could also be used, for example, the MannWhitney U test, or the median test, or their analogs for more than two groups.

Covariance analysis, where the pretest score is used as the covariate, is another method used for analyzing this design. The difference score method is essentially

[^4]a special case of the analysis of covariance where the regression coefficient of the posttest on the pretest is assumed to equal unity. Neter and Wasserman (1974, p. 717) and Cox (1958, pp. 55-56) point out that if the common slope is not near one the covariance analysis probably will be better than the difference score analysis. We note that when an experimental group is to be compared to a control group, it is often likely that inequality of slopes will prevail among groups, thus violating an assumption of the analysis of covariance. Bock (1975, Sec. 7.3) compares the interpretation of a difference-score analysis and covariance analysis and suggests guidelines regarding which analysis to use.

Still another method of analyzing this design is to view the pretest and posttest as a repeated-measures/ split-plot design or as a profile of two measurements for each subject. Repeated-measures/split-plot designs are discussed in detail by Winer (1971) and Steel and Torrie (1980), whereas both repeated measures and profile analysis are discussed in Morrison (1976, Secs. 4.5, 4.6, and 5.6).

This article illustrates some of the equivalences and differences between the difference score analysis and the repeated-measures/split-plot or profile analysis. The numerical example and major discussion are for a two-group pretest/posttest design where subjects are not matched. Concluding remarks indicate how the results can be extended easily to more than two groups.

2. A NUMERICAL EXAMPLE

We consider data from Rikkers et al. (1978), who report results of a prospective randomized surgical trial allocating cirrhotic patients who had bled from varices to either a nonselective shunt (standard operation) or to a selective shunt (new operation). The dependent variable is the maximal rate of urea synthesis (MRUS), which is a quantitative test of liver function. Poor liver function is associated with a low MRUS value. MRUS was measured preoperatively and early postoperatively in eight selective shunt patients and thirteen nonselective shunt patients. The purposes of the study were to assess preoperatively the comparability of the selective and the nonselective groups and to longitudinally evaluate the change in liver function

1. Pre and Post Maximal Rate of Urea Synthesis Level (mg urea N/hr/kg BW ${ }^{3 / 4}$) and Sample Cell Means, by Group

Group	Subject	Pre	Post
Selective Shunt	1	51	48
(new operation)	2	35	55
	3	66	60
	4	40	35
	5	39	36
	6	46	43
	7	52	46
Mean	8	42	54
Nonselective Shunt	9	34	16
(standard operation)	10	40	36
	11	34	16
	12	36	18
	13	38	32
	14	32	14
	15	44	20
	16	50	43
17	60	45	
	18	63	67
Mean	19	50	36

of the two groups. Table 1 reports the MRUS values for each patient for the preoperative and postoperative periods and the respective cell means.

For completeness Table 2 displays the standard repeated-measures analysis of variance table (analysis of means method); in this example the total number of subjects, n, is 21 . The hypotheses of interest to the researchers were the interaction test and the simple effects test on equality of preoperative population means between groups. The test for interaction is significant ($F=11.36$ with 1 and $19 \mathrm{df}, p<.005$); therefore, it is concluded that the pre/post average change in the nonselective group is significantly different from the pre/post average change in the selective group (see the figure). In the presence of a significant interaction effect it is generally of interest to test simple effects rather than main effects (Winer 1971, p. 529). The Bonferroni multiple-comparison procedure (see Neter and Wasserman 1974) was adopted to test the following contrasts:

$$
\left(\mu_{12}-\mu_{11}\right)-\left(\mu_{22}-\mu_{21}\right)=0
$$

$$
\begin{aligned}
& \mu_{12}-\mu_{11}=0 \\
& \mu_{22}-\mu_{21}=0
\end{aligned}
$$

and

$$
\mu_{11}-\mu_{21}=0
$$

Using an experiment wise error rate of .05 , we conclude that the interaction effect is significant and μ_{21} is significantly greater than μ_{22}. Therefore, significant deterioration of liver function occurred in the nonselective patients between preoperative and early postoperative evaluation periods, whereas the selective group had no apparent deleterious effect. Two points are worth noting in the example just cited: (a) The equality of slopes test using the preoperative MRUS values as a covariate is rejected ($p<.02$); and (b) the significant interaction effect requires special handling when testing the last contrast since, for the pretest level, we have a two-group experiment in which there are no repeated measures. Therefore, the appropriate error term for this type of comparison is MS (within cell). For a more extensive coverage of this point the reader is referred to Winer (1971, pp. 529-532).

3. REPEATED-MEASURES ANALYSIS

We now discuss the statistical properties of the repeated-measures analysis of variance for this example and compare it with the statistical properties of the difference score analysis. Using the model proposed by Winer (1971, p. 519), we have

$$
\begin{align*}
X_{i j k}=\mu+\alpha_{i}+\Pi_{k(i)}+\beta_{j}+ & \alpha \beta_{i j} \\
& +\beta \Pi_{j k(i)}+\epsilon_{m(i j k)} \tag{3.1}
\end{align*}
$$

$j=1,2($ pretest $=1$, posttest $=2$),
$i=1,2($ group $1=1$, group $2=2)$,
$k=1,2, \ldots, n_{i}, \quad m=1$,
where $X_{i j k}$ is the observed value of subject k within group i at time j,
μ is the overall mean, α_{i} is the effect of group i, $\Pi_{k(i)}$ is the effect of subject k nested within group i, β_{j} is the effect of the repeated-measures variable j (i.e., pretest and posttest),
$\alpha \beta_{i j}$ is the interaction of group i with level j of the repeated measures factor,

2. Repeated-Measures Analysis of Variance for Maximal Rate of Urea Synthesis Level				
Source of Variation	$d f$	Sum of Squares	Mean Squares	F Ratio
Between Subjects	$20(n-1)$			
Groups	1	847.48	$847.48\left(\mathrm{MS}_{\mathrm{G}}\right)$	$3.63\left(\mathrm{MS}_{\mathrm{G}} / \mathrm{MS}_{\mathrm{E}}\right)$
Subjects Within Groups	$19(\mathrm{n}-2)$	4440.00	$233.68\left(\mathrm{MS}_{\mathrm{E}}\right)$	
Within Groups	21 (n)			
Pre/Post	1	317.69	$317.69\left(\mathrm{MS}_{\mathrm{P}}\right)$	$8.86\left(\mathrm{MS}_{\mathrm{P}} / \mathrm{MS}_{\mathrm{PE}}\right)$
Groups x Pre/Post	1	407.41	$407.4\left(\mathrm{MS}_{\mathrm{GP}}\right)$	$11.36\left(\mathrm{MS}_{\mathrm{GP}} / \mathrm{MS}_{\mathrm{PE}}\right)$
(Pre/Post) x Subjects Within Groups	$19(\mathrm{n}-2)$	681.21	$35.85\left(\mathrm{MS}_{\mathrm{PE}}\right)$	

and
$\beta \Pi_{j k i)}$ is the interaction of subject k within group i with level j of the repeated-measures factor.
The following constraints are imposed on the parameters:

$$
\alpha .=\beta .=\alpha \beta_{i}=\alpha \beta_{\cdot j}=0,
$$

where

$$
\begin{equation*}
\alpha \beta_{\cdot j}=\sum_{i} \alpha \beta_{i j}, \text { and so on. } \tag{3.2}
\end{equation*}
$$

In the design under discussion, the repeated-measures factor and the group factor are each at two levels.

The general analysis of variance also is indicated in Table 2, where n is the total number of subjects. Note that it is not necessary for each group to contain the same number of subjects. Assuming the group factor and the pre/post factor to be fixed effects, Winer (1971) shows that the appropriate F tests are as indicated in the F ratio column of Table 2.

It is worth noting exactly what null hypotheses are tested in Table 2. The ratio $\mathrm{MS}_{\mathrm{G}} / \mathrm{MS}_{\mathrm{E}}$ tests the null hypothesis that there is no group main effect. This is equivalent to testing whether the sum of the pretest and posttest observations on each subject has the same population mean in the two groups. The ratio $\mathrm{MS}_{\mathrm{P}} / \mathrm{MS}_{\mathrm{PE}}$ tests the null hypothesis that there is no pre/post main effect and is equivalent to testing whether the population mean of the pretest observations is the same as the population mean of the posttest observations. The ratio $\mathrm{MS}_{\mathrm{GP}} / \mathrm{MS}_{\mathrm{PE}}$ tests the null hypothesis that there is no interaction between the group main effect and the pre/post main effect. This ratio also tests whether the difference between pretest and posttest observations has the same population mean in both groups. This is the test many researchers are interested in when using this research design, since they often wish to assess whether a treatment has had any effect upon an experimental group. Note that this F test has $(1, n-2) \mathrm{df}$, which will correspond to the t test with $(n-2) \mathrm{df}$, as discussed in the next section.

Two assumptions are required to arrive at the F tests indicated in Table 2 (Winer 1971).

1. The pretest and posttest population variancecovariance matrices for each group are assumed equal.
2. The random effects $\Pi_{k(i)}, \beta \Pi_{j k(i)}$, and $\epsilon_{m(i j k)}$ from the model in (3.1) are all independently and normally distributed with mean zero and variances ${\sigma_{\Pi}}^{2}, \sigma_{\beta \Pi}{ }^{2}$, and ${\sigma_{E}}^{2}$, respectively.
Assumption (1), equality of the variance-covariance matrices, implies two other results worth noting. First, the variation of subjects within the two groups is homogeneous. That is, if each subject's pretest and posttest observations are added together, this sum has the same population variance in both groups. This allows pooling over groups to calculate SS_{E}. Second, the variation of the interaction of subject and the pre/ post factor is homogeneous for the two groups. That is, if the difference score between pretest and posttest is

Mean Pre and Post Nıaximal Rate of Urea Synthesis Level (MRUS) by Type of Surgery
defined for each subject, the population variance of the difference scores is the same for both groups. This allows pooling over groups to calculate $\mathrm{SS}_{\mathrm{PE}}$.

4. DIFFERENCE-SCORE ANALYSIS

Using model (3.1) and forming a difference score $d_{i k}$ for each subject k nested in group i yields

$$
\begin{align*}
d_{i k}= & X_{i 1 k}-X_{i 2 k} \\
= & \left(\beta_{1}-\beta_{2}\right)+\left(\alpha \beta_{i 1}-\alpha \beta_{i 2}\right)+\left(\beta \Pi_{1 k(i)}-\beta \Pi_{2 k(i)}\right) \\
& \quad+\left(\epsilon_{m(i 1 k)}-\epsilon_{m(i 2 k)}\right) . \tag{4.1}
\end{align*}
$$

The term $\left(\alpha \beta_{i 1}-\alpha \beta_{i 2}\right)$ is a parameter associated with group i and measures the "effect'" of group i on the difference score $d_{i k}$. The null hypothesis to be tested is $H_{o}: \alpha \beta_{11}-\alpha \beta_{12}=\alpha \beta_{21}-\alpha \beta_{22}$ or $H_{o}: \alpha \beta_{11}-\alpha \beta_{12}$ $=\alpha \beta_{21}-\alpha \beta_{22}=0$. The difference scores in (4.1) can be viewed as a one-way classification model in which the error term is the sum of the following two terms:

$$
\left(\beta \Pi_{1 k(i)}-\beta \Pi_{2 k(i)}\right) \quad \text { and } \quad\left(\epsilon_{m(i 1 k)}-\epsilon_{m(i 2 k)}\right)
$$

If we assume this error term and also homogeneous variances for the two groups, an appropriate test statistic is the Student t test for two independent samples with $(n-2) \mathrm{df}$.

5. COMPARISON OF THE TWO ANALYSES

The following three results are useful computationally and can be verified easily with the example from Table 1.

1. If the sum of the pretest and posttest is formed for each subject and a two-sample t test is used to compare the group means of the sum, then the calculated $t=1.904$ and is the square root of the F test for Groups in Table 2 with $(1,19)$ df.
2. If the difference between the pretest and the posttest is formed for each subject and a two-sample t test is used to compare the group means of these differences, then the calculated $t=3.371$ and is the square root of the F test for Groups x (pre/post) in Table 2 with $(1,19) \mathrm{df}$.
3. If all 21 subjects are considered to be in one group, then the t statistic to test the null hypothesis that the mean difference score is zero has 20 df and equals 3.158. From Table 2, if we reanalyze the within-subjects component by assuming that the Group x (pre/post) interaction is zero and $\mathrm{SS}_{\mathrm{GP}}$ is pooled with $\mathrm{SS}_{\mathrm{PE}}$, then the F test for the main effect pre/post yields $F=9.97$ with $(1,20)$ df, which equals the square of the preceding t statistic.

These results demonstrate that the various F tests in the repeated-measures analysis of variance can be obtained by using simple t tests on linear combinations of the pre and post scores. It can be shown algebraically that interpretations (1), (2), and (3) of the F tests hold in the particular research design discussed in this article, that is, a two-group pretest/posttest design. In fact, the numerical operations in (1) and (2) of summing and differencing the pretest/posttest observations are used by the latest version of the BMD P2V program in calculating sums of squares in repeated-measures designs (Dixon and Brown 1979).

Since the difference-score analysis is embedded in the repeated-measures analysis, the repeated-measures analysis provides more information about the data at hand. Fewer assumptions, however, are required in the difference-score analysis. The difference-score analysis assumes only homogeneous variances for the difference scores and a normally distributed error term with mean zero. It is easy to show that if the assumptions of the repeated-measures analysis are satisfied, then the assumptions of the difference-score analysis are also met. However, the converse is not true.

In our experience, the researcher rarely is interested in only the interaction test, that is, the difference-score analysis. Furthermore, simple effects are commonly of interest even in the no interaction effect experiments. Therefore, we advocate the use of the repeated-measures/split-plot analysis in most instances. However, we urge the user to empirically validate the underlying assumptions.

In the example discussed in Section 2, the researchers would have been interested in assessing the significance
of the main effect time (pre vs. post) if the Groups x pre/post interaction had been nonsignificant. That is, the nonsignificant interaction would have indicated that the two groups did not differ significantly on their MRUS difference scores. The pre/post main effect test would then indicate whether the MRUS difference score in both groups was significantly different from zero, that is, whether the treatment did or did not effect both groups.

6. GENERALIZATION OF FINDINGS

If there are more than two groups, similar results can be obtained. The difference-score analysis would no longer be performed by a t test but by an F test in a one-way analysis of variance. A further extension can be made where the different groups being compared may be defined by several factors in a factorial design.
However, there is no logical extension of this discussion to more than two levels of the repeatedmeasures factor since a simple difference score analysis would no longer be appropriate.
[Received July 1977. Revised June 1980.]

REFERENCES

Bock, R. Darrell (1975), Multivariate Statistical Methods in Behavioral Research, New York: McGraw-Hill Book Co.
Cook, Thomas D., and Campbell, Donald T. (1979), QuasiExperimentation: Design and Analysis Issues for Field Settings, Chicago: Rand McNally.
Cox, D.R. (1958), Planning of Experiments, New York: John Wiley \& Sons.
Dixon, Wilfred J., and Brown, Morton B. (eds.) (1979), Biomedical Computer Programs P-Series, Berkeley: University of California Press.
Morrison, Donald F. (1976), Multivariate Statistical Methods (2nd ed.), New York: McGraw-Hill Book Co.
Neter, John, and Wasserman, William (1974), Applied Linear Statistical Models, Homewood, Ill.: Richard D. Irwin.
Rikkers, Layton F., Rudman, Daniel, Galambos, John T., Fulenwider, J. Timothy, Milliken, William J., Kutner, Michael H., Smith, Robert B., Salam, Atef A., Sones, Peter J., and Warren, W. Dean (1978), "A Randomized, Controlled Trial of the Distal Spenorenal Shunt," Annals of Surgery, 188, 271-282.
Steel, Robert G.D., and Torrie, James H. (1980), Principles and Procedures of Statistics (2nd ed.), New York: McGraw-Hill Book Co.
Winer, B.J. (1971), Statistical Principles in Experimental Design (2nd ed.), New York: McGraw-Hill Book Co.

```\[ >\mathrm{bk} \] method prepost urea subj```				
1	1	1	51	1
2	1	2	48	1
3	1	1	35	2
4	1	2	55	2
5	1	1	66	3
6	1	2	60	3
7	1	1	40	4
8	1	2	35	4
9	1	1	39	5
10	1	2	36	5
11	1	1	46	6
12	1	2	43	6
13	1	1	52	7
14	1	2	46	7
15	1	1	42	8
16	1	2	54	8
17	2	1	34	9
18	2	2	16	9
19	2	1	40	10
20	2	2	36	10
21	2	1	34	11
22	2	2	16	11
23	2	1	36	12
24	2	2	18	12
25	2	1	38	13
26	2	2	32	13
27	2	1	32	14
28	2	2	14	14
29	2	1	44	15
30	2	2	20	15
31	2	1	50	16
32	2	2	43	16
33	2	1	60	17
34	2	2	45	17
35	2	1	63	18
36	2	2	67	18
37	2	1	50	19
38	2	2	36	19
39	2	1	42	20
40	2	2	34	20
41	2	1	43	21
42	2	2	32	21

```
> tapply(urea, list(method, prepost), mean)
 1 2
146.37500 47.12500
2 43.53846 31.46154
> bkrepaovW1 = aov(urea[method == "1"] ~ as.factor(prepo
> summary(bkrepaovW1)
as.factor(prepost[method == "1"])
as.factor(subj[method == "1"])
as.factor(prepost[method == "1"]):as.factor(subj[method
> bkrepaovW2 = aov(urea[method == "2"] ~ as.factor(prepo
> summary(bkrepaovW2)
as.factor(prepost[method == "2"])
as.factor(subj[method == "2"])
as.factor(prepost[method == "2"]):as.factor(subj[method
> summary(bkrepaovBase)
as.factor(prepost) 1 1 542.9 542.9
as.factor(method) 1}844.5 847.
as.factor(prepost):as.factor(method) 1 407.4 407.4
Residuals 38 5121.2 134.8
```

LONG FORM

> bk				
1	1	1	51	1
2	1	2	48	1
3	1	1	35	2
4	1	2	55	2
5	1	1	66	3
6	1	2	60	3
7	1	1	40	4
8	1	2	35	4
9	1	1	39	5
10	1	2	36	5
11	1	1	46	6
12	1	2	43	6
13	1	1	52	7
14	1	2	46	7
15	1	1	42	8
16	1	2	54	8
17	2	1	34	9
18	2	2	16	9
19	2	1	40	10
20	2	2	36	10
21	2	1	34	11
22	2	2	16	11
23	2	1	36	12
24	2	2	18	12
25	2	1	38	13
26	2	2	32	13
27	2	1	32	14
28	2	2	14	14
29	2	1	44	15
30	2	2	20	15
31	2	1	50	16
32	2	2	43	16
33	2	1	60	17
34	2	2	45	17
35	2	1	63	18
36	2	2	67	18
37	2	1	50	19
38	2	2	36	19
39	2	1	42	20
40	2	2	34	20
41	2	1	43	21
42	2	2	32	21





Update of $B K$ repeated measures analysis
R version 2.14 .1 (2011-12-22)
Copyright (C) 2011 The R Foundation for Statistical Computing
ISBN 3-900051-07-0
Platform: x86_64-pc-mingw32/x64 (64-bit)
> library(lme4)
> \#note brogkutlong restarts subject numbering at 1 for each method; brogkutlong2 numbe
$>\mathrm{bk}=$ read.table(file="http://www-stat.stanford.edu/~rag/stat222/brogkutlong2.dat", h
> attach(bk)
> bklist = lmList(outcome ~ time|subject, data = bk) \# getting difference scores the ha > bklist
Call: lmList(formula = outcome ~ time | subject, data = bk)
Coefficients:
(Intercept) time
54 -3
1520
72 -6
45 -5
$42-3$
$49-3$
58 -6
$30 \quad 12$
$52-18$
44 -4
52-18
$54-18$
44 -6
50-18
68-24
57 -7
$75-15$
$59 \quad 4$
$64-14$
$50-8$
$54-11$
Error in pooledSD(object) :
No degrees of freedom for estimating std. dev.
\# if you want the "intercept" to be level at time=1 (pretest) the
> t1 = time - 1
$>$ bklist1 $=$ lmList(outcome $\sim$ t1|subject, data $=b k)$

```
> library(lattice) # make a plot for individual subjects
> xyplot(outcome ~ time|subject, groups = method, type = c("p","r"), data = bk)
the repeated measures anova, shown in previous analysis
> bkrepaov1 = aov(outcome ~ as.factor(time)*as.factor(method)+ Error(as.factor(subject)
> summary(bkrepaov1)
Error: as.factor(subject)
 Df Sum Sq Mean Sq F value Pr(>F)
as.factor(method) 1 847 847.5 3.627 0.0721 .
Residuals 19 4440 233.7
```

$\mathrm{bk}=$ read.table(file="http://statweb.stanford.edu/~rag/stat222/brogkutlong2.dat", header = T)
bk \$t1 = bk\$time - $1 \quad>\mathrm{bk} \$ \mathrm{G}=\mathrm{bk} \$$ method - $1 \quad>$ head $(\mathrm{bk})$
method time outcome subject tl G
$\begin{array}{lllllll}1 & 1 & 1 & 51 & 1 & 0\end{array}$
> bklist $=$ lmList(outcome $\sim$ tl|subject, data $=b k$ ) \# getting difference scores the hard way
> bklmera $=$ leer (outcome $\sim$ tl + tl:as.factor(method) $+(t 1 \mid$ subject), data $=b k)$
Error: number of observations (=42) <= number of random effects (=42) for term (ti | subject); the rand
> \# fix it by 'no 2-wave worries'
> bklmera $=$ lmer(outcome $\sim$ tl + tl:as.factor(method) $+(t 1 \mid$ subject), data $=\mathrm{bk}$,
control $=$ lmerControl(check.nobs.vs.nRE $=$ "warning"))

Warning messages:
1: number of observations (=42) <= number of random effects (=42) for term (tl | subject); the random- $\epsilon$ > summary(bklmera) Linear mixed model fit by REML ['lmerMod'] Formula: outcome $\sim$ tl + t1:as.factor(method) + (tl | subject) Data: bk

Level $1 \quad y=\alpha_{0}+\alpha_{1}$ tr $+\varepsilon$ ( $\alpha_{0}=$ pres, $\alpha_{1}=$ post-pre $)$
Control: lmerControl(check.nobs.vs.nRE = "warning")
Random effects:

Groups	Name	Variance	Std.Dev. Corr	
subject	(Intercept)	66.45	8.152	
	tl	17.31	4.161	0.87
Residual		27.20	5.215	

Number of obs: 42, groups: subject, 21 Fixed effects:

Estimate Std. Error $t$ value

(Intercept)	44.6190	2.1117	21.129
tl	0.7057	2.9931	0.236
t1:as.factor(method)2	-12.7553	3.8035	-3.354

> anova(bklmera) \# put fixed effects in SS metric Analysis of Variance Table

Bf	Sum Sq	Mean Sq	value
1	411.79	411.79	15.142
1	305.84	305.84	11.246

Level 2

$$
\begin{aligned}
& \alpha_{0}=\gamma_{\infty 0}+u_{0} \text { no }_{n} \text { diff }^{\alpha_{1}=\gamma_{10}+\gamma_{1,1} \text { method } 1 a_{1}}
\end{aligned}
$$

\#method 2 is old method
$\begin{array}{lllll}\text { tl } & 1 & 411.79 & 411.79 & 15.142 \\ \text { tl:as.factor(method) } & 1 & 305.84 & 305.84 & 11.246\end{array}$
> confint(bklmera)
Computing profile confidence intervals ...
$>$ \# properly bombs on random effects because fitting line to 2 points |subject
$>$ confint(bklmera, method = "boot", sim = 1000, boot.type = "parc")
Computing bootstrap confidence intervals ...

$$
\begin{array}{rr}
2.5 \% & 97.5 \% \\
4.9016210 & 11.555923 \\
-0.3783355 & 1.000000 \\
0.6097805 & 7.555747 \\
3.4510062 & 6.530776 \\
40.5845364 & 48.945127 \\
-5.4157384 & 6.548160 \\
-20.1664950 & -5.184535
\end{array}
$$

$$
\text { sd_(Intercept)|subject } \quad 4.9016210 \quad 11.555923
$$

$$
\text { cor_t1.(Intercept)|subject }-0.3783355 \quad 1.000000
$$

$$
\text { sd_t1|subject } \quad 0.6097805 \quad 7.555747
$$

$$
\begin{array}{lll}
\text { sigma } & 3.4510062 \quad 6.530776
\end{array}
$$

$$
\text { (Intercept) } \quad 40.584536448 .945127
$$

tl: as.factor(method)2
There were 50 or more warnings (use warnings() to see the first 50)
> \# bootstrap gives reasonable bounds for random effects even
> \# leer 'a' does not include pretest diffs because of random assignment, can look at that
$>$ bklmerb = lmer(outcome $\sim$ ti + tl*as.factor(method) + (t1|subject), data $=\mathrm{bk}$, control = lmerControl( > anova(bklmera, bklmerb) \# compare nested models
refitting models) with ML (instead of REML) Data: bk
Models:
bklmera: outcome $\sim$ tl + t1:as.factor(method) + (ti | subject)
bklmerb: outcome $\sim$ tl + ti * as.factor(method) + (ti | subject) bf AIC BIC logLik deviance Chisq Chi bf Pr(>Chisq)
bklmera $\begin{array}{lllll}7 & 315.10 & 327.26 & -150.55 & 301.10\end{array}$
$\begin{array}{lllllllll}\text { bklmerb } & 8 & 316.65 & 330.55 & -150.32 & 300.65 & 0.4516 & 1 & 0.5016\end{array}$
> \# extended model does not help

Repeated Measures

## model

$$
\begin{aligned}
& X_{i j k}=\mu+\alpha_{i}+\Pi_{k(t)}+\beta_{j}+\alpha \beta_{i j} \\
& j=1,2(\text { pretest }=1, \text { postest }=2), \\
& i=1,2(\text { group } 1=1, \text { group } 2=2), \\
& k=1,2, \ldots, n_{j k(i)}+\epsilon_{m(i j k)},
\end{aligned}
$$

where $X_{i j k}$ is the observed value of subject $k$ within group $i$ at time $j$,

## Brogan-kuther ix p. 2 D.RogosA

$\mu$ is the overall mean, $\alpha_{i}$ is the effect of group $i$,
$\Pi_{k(i)}$ is the effect of subject $k$ nested within group $i$,
$\beta_{j}$ is the effect of the repeated-measures variable $j$ (i.e., pretest and posttest),
$\alpha \beta_{i j}$ is the interaction of group $i$ with level $j$ of the repeated measures factor,
$\beta \Pi_{j k(i)}$ is the interaction of subject $k$ within group $i$ with level $j$ of the repeated-measures factor.
2. Repeated-Measures Analysis of Variance for Maximal Rate of Urea Synthesis Level


## Did the groups change differentially?

## SAS or minitab does it

## ( $R$ has problem $\mathrm{V} /$ imbalance anova TBD error

proc glom data=brogk;
class gre;
model m1--m2 = gre /nouni;
repeated Time 2 (1 2) / summary printe;
run;
OUTPUT (selected)
The SAS System 16:13 Tuesday, May 16, 200035
The GLM Procedure
Repeated Measures Analysis of Variance Tests of Hypotheses for Between Subjects Effects

Source	DE	Type III SS	Mean Square	F Value	Pr $>$ F	
gre	1	847.476190	847.476190		3.63	0.0721
Error	19	4440.000000	233.684211			

The GLM Procedure
Repeated Measures Analysis of Variance
Univariate Tests of Hypotheses for Within Subject Effects

Source	DE	Type III SS	Mean Square	F Value	Pr $>\mathrm{F}$
Time	1	317.6932234	317.6932234	8.86	0.0078
Time*grp	1	407.4075092	407.4075092	11.36	0.0032
Error(Time)	19	681.2115385	35.8532389		

```
Brogan-Kutner Data see http://www-stat.stanford.edu/~rag/ed351longit/brogkut.dat
Cell means
> tapply(urea, list(method, prepost), mean)
146.37500 47.12500
.37500 47.12500
2 43.53846 31.46154
Recreate repeated measures anova (nesting)
within-groups anova to obtain the 2 error terms
#within group 1 subjXtime
> bkrepaovW1 = aov(urea[method == "1"] ~ as.factor(prepost[method == "1"])*as.factor(subj[method == "1"]))
> summary(bkrepaovW1)
as.factor(prepost[method == "1"])
as.-actor(prepost[method =="1"])
 1 2.25 2.25
as.factor(subj[method == "1"]) 7 915.00 130.71
 piece of subjects within groups Between subjects error term
as.factor(prepost[method == "1"]):as.factor(subj[method == "1"]) 7 331.75 47.39
 piece of subjectsxrepeated measure within group interaction Within subjects error term
#within group 2 subjXtime
> bkrepaovW2 = aov(urea[method == "2"] ~ as.factor(prepost[method == "2"])*as.factor(subj[method == "2"]))
> summary(bkrepaovW2)
Df Sum sq Mean Sq
as.factor(subj[method == "2"]) 12 12 3525.0 293.7
piece of subjects within groups Between subjects error term
as.factor(prepost[method == "2"]):as.factor(subj[method == "2"]) 12 349.5 29.1
 piece of subjectsxrepeated measure within group interaction Within subjects error term
\begin{tabular}{ll}
\(\#\) & \(915+3525=4440(\) and \(7+12=19 \mathrm{df})\) Between subjects SS error term \\
\(\#\) & \(331.7+349.5=681.2\) (and \(7+12=19 \mathrm{df})\) Within subjects SS error term
\end{tabular}
ignore within-subjects, get
> bkrepaovBase = aov(urea ~ as.factor(prepost)*as.factor(method))
> summary(bkrepaovBase)
```



```
Brogan-Kutner Section 5 Equivalences
 # Groups, pooling over occasion
> sumtime = pre + post
> t.test(sumtime ~ as.factor(method), var.equal = TRUE)
 Two Sample t-test data: sumtime by as.factor(method)
t = 1.9044, df = 19, p-value = 0.07212
95 percent confidence interval: -1.832786 38.832786
mean in group 1 mean in group 2
 93.5 75.0
> 1.904^2 [1] 3.625216 # matches F-stat for Groups (bet subj)
> imp = post - pre
> t.test(imp ~ as.factor(method), var.equal = TRUE)
 Two Sample t-test data: imp by as.factor(method)
t = 3.3709, df = 19, p-value = 0.003209
95 percent confidence interval: 4.862645 20.791201
mean in group 1 mean in group 2
0.75000 -12.07692
> 3.3709^2 [1] 11.36297 # matches F-stat for Groups X prepost
> t.test(imp)
 One Sample t-test data: imp
t = -3.1581, df = 20, p-value = 0.004947
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval: -11.939835 -2.441117
mean of x -7.190476
> 3.1581^2 [1] 9.973596 # equiv to prepost, no differential change
```

> bksubj
bksubj
pre post method
$\begin{array}{llll}1 & 51 & 48 & 1\end{array}$
BK p. 232

```
> bkrepaov1 = aov(urea ~ as.factor(prepost)*as.factor(method)+ Error(as.factor(subj)))
> summary(bkrepaov1)
Error: as.factor(subj)
 Df Sum Sq Mean Sq F value Pr(>F)
as.factor(method) 1 847.5 847.5 3.6266 0.07212 .
Residuals 19 4440.0 233.7

Error: Within
 Df Sum Sq Mean Sq F value Pr (>F)
```



```
as.factor(prepost):as.factor(method) 1 407.41 407.41 11.363 0.0032085 **
Residuals 19 681.21 35.85
```


## Repeated Measures Anova more BK

\# Brogan-Kutner Data see http://www-stat.stanford.edu/~rag/ed351longit/brogkut. dat
\# Cell means
> tapply(urea, list(method, prepost), mean)
$1 \quad 2$
146.3750047 .12500
243.5384631 .46154
\# Recreate repeated measures anova (nesting)
\# within-groups anova to obtain the 2 error terms
\#within group 1 subjXtime
$>$ bkrepaovw1 $=$ aov(urea [method $==" 1 "]$ ~ factor
> summary(bkrepaovwl)
as. factor (prepost [method $==$ "1"])
as.factor(subj.[method == "1"])
Def Sum Sq Mean Sq
$2.25-2.25$
piece of subjects within groups Between subjects error term
as.factor (prepost[method == "1"]):as.factor(subj[method == "1"]) 7331.75 47.39 piece of subjectsxrepeated measure within group interaction within subjects error term
\#within group 2 subjxtime
$>$ bkrepaovW2 = aov(urea [method == "2"] ~ as.factor(prepost [method == "2"])*as.factor (subj [method == "2"]))
> summary(bkrepaovW2)

\# $\quad 915+3525=4440$ (and $7+12=19 \mathrm{df}$ ) Between subjects SS error term
\# $331.7+349.5=681.2$ (and $7+12=19$ ff) Within subjects SS error term
\# ignore within-subjects, get
> bkrepaovBase $=$ aov(urea - as.factor(prepost)*as.factor (method))
> summary(bkrepaovBase)
Def Sum Sq Mean $S q$ F value $\operatorname{Pr}(>F)$
as. factor (prepost)
as. factor (method)
$\begin{array}{lllll}1 & 542.9 & 542.9 & 4.0282 \quad 0.05190\end{array}$
as.factor (method) $\quad 1 \quad 847.5 \quad 847.5 \quad 6.2884 \quad 0.01654$ *
as. factor (prepost) : as. factor (method)
$1 \quad 407.4 \quad 407.4 \quad 3.0230 \quad 0.09019$.
385121.2134 .8
\#repeated measure (Within subj part) \#Group (Between subjects part)
\#GroupxRepeated measure Interaction
(Within subjects part)
\# Brogan-Kutner Section 5 Equivalences
\# Groups, pooling over occasion
> sumtime = pre + post
> t.test (sumtime ~ as.factor (method), var. equal = TRUE) Two Sample t-test data: sumtime by as.factor (method)
$t=1.9044, \mathrm{df}=19, \mathrm{p}$-value $=0.07212$
95 percent confidence interval: -1.83278638 .832786
mean in group 1 mean in group 2
93.5
75.0
> $1.904^{\wedge} 2$ [1] 3.625216 \# matches F-stat for Groups (bet subj)
> imp = post - pres
> t.test(imp ~ as.factor(method), var. equal $=T R U E)$
Two Sample t-test data: imp by as.factor (method) $t=3.3709, \mathrm{df}=19, \mathrm{p}$-value $=0.003209$
95 percent confidence interval: 4.86264520 .791201 mean in group 1 mean in group 2 0.75000
$>3.3709^{\wedge} 2$
> t. test (imp)
One Sample t-test data: imp
$t=-3.1581, \mathrm{df}=20, \mathrm{p}$-value $=0.004947$
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval: -11.939835 -2.441117
mean of $x-7.190476$
$>3.1581^{\wedge} 2$ [1] 9.973596 \# equiv to prepost, no differential change BK p. 232

## cf main BK handout <br> data observations as rows (42)

## Do repented measures anoua

 by crossed designs on subsets.> bkrepaovl = aov(urea ~ as.factor(prepost)*as.factor(method) + Error(as.factor(subj)))
> summary (bkrepaovi)
Error: as.factor(subj)

Def	Sum Sq Mean Sq $F$ value	$\operatorname{Pr}(>F)$		
1	847.5	847.5	3.6266	0.07212

as.factor (method) $1 \begin{array}{lllll} & 847.5 & 847.5 & 3.6266 & 0.07212 .\end{array}$
$\begin{array}{lll}\text { Residuals } & 194440.0 \quad 233.7\end{array}$
Error: Within
as. factor (prepost)
as. factor (prepost) : as. factor (method)
as.factor(prepost): as.factor(method)
Df Sum Sq Mean $S q$ F value $\operatorname{Pr}(>F)$

Residuals
subjxprepostxmethod
$1542.88 \quad 542.88 \quad 15.142 \quad 0.0009823$ ***
$1407.41407 .41 \quad 11.363 \quad 0.0032085$ **
$19681.21 \quad 35.85$

## $R$ does the repeated meas design See Barantli

Update of $B K$ repeated measures analysis
> library (le)
> \#note brogkutlong restarts subject numbering at 1 for each method; brogkutlong2 numbers sequentially

$>$ attach(bk)
clatain stat 222 web
> bklist = lmList(outcome $\sim$ time|subject, data $=b k$ ) \# getting difference scores the hard way
> bklist
Call: lmList(formula $=$ outcome $\sim$ time $\mid$ subject, data $=$ bk)
Coefficients:
(Intercept) time
$\begin{array}{lrr}1 & 54 & -3 \\ 2 & 15 & 20 \\ \ldots & 54 & -11 \\ 21 & \text { if you want the "intercept" to be level at time =1 (pretest) the } \\ & \text { best do bkStl=bkStime - } 1\end{array}$
\# if you want the "intercept" to be level at time=1 (pretest) the
$>$ ti $=$ time - 1
$>$ bklistl $=$ lmList (outcome $\sim t 1 \mid$ subject, data $=b k$ ) better iscus/on
> library(lattice) \# make a plot for individual subjects
$>$ xyplot(outcome ~ time|subject, groups $=$ method, type $=c(" p ", " r ")$, data/= bk) for plots
\# the repeated measures anova, shown in previous analysis
$>$ bkrepaovl $=$ aov(outcome ~ as.factor(time)*as.factor(method) + Error/as.factor(subject)))
> summary(bkrepaov1)
Error: as.factor(subject)
$\begin{array}{lrrrrrrl} & \text { Cf Sum Sq Mean Sq F value } \operatorname{Pr}(>F) \\ \text { as.factor(method) } & 1 & 847 & 847.5 & 3.627 & 0.0721 \text {. } \\ \text { Residuals } & 19 & 4440 & 233.7\end{array}$
Error: Within by Sum Sq Mean Sq f value $\operatorname{Pr}(>F)$ bigger then Types
as.factor(time)

Residuals
unequal group sites
---
Signify. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
\# as noted R does Type I SS, Type III SS/for time is 317 (SAS etc); interaction is prime concern, that (407) matches SAS PROC GLM

$22.981^{\wedge} 2$
$[1] 8.886361$ TGnCTIT SAS
Mode 1
Level within subject $t$ 1: time -1 nether this way
\# this matches $F$-statistic in publication (and SAS) repeated measures output of 8.86 for pre/post (time)
\# whereas the gov above has F-statistic 15.1
\# SS not comparable with anova because here were are modeling level 1 params, not outcome
So before looking at other small details, let us declare an leer victory over non-othogonal designs
extended version posted blamer
> bklmea = lme(outcome $\sim \mathrm{t} 1+\mathrm{t} 1:$ as.factor(method), random $=\sim \mathrm{t} 1 \mid$ subject, data $=\mathrm{bk}$ )
$>$ bkImea $=$ Ime(out
$>$ summary(bklmea)
A short session using Ime for the Brogan-Kutner data is provided here
A
$\qquad$









The work-around I suggest is to employ the older brother of 1 me4, package nlme, function 1 me for two-wave data. The nlme package is part of base R
We met package nlme briefly in week 9, as the Joint Models package uses nlme for the measured variables (time trajectories) portion of the analysis.
We met package nlme briefly in week 9, as the Joint Models package uses nlme for the measured
The code above changes to (notice the clunkier syntax for the random part of the mixed-model).
for the Brogan-Kumer data is provided
$\square$





路

```
> bklmera = lmer(outcome ~ t1 + t1:as.factor(method) + (t1|subject), data = bk)
```



```
> # fix it by 'no 2-wave worries'
```



```
Warning messages:
```



```
2: In checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
 Model is nearly unidentifiable: large eigenvalue ratio
 - Rescale variables?
> summary(bklmera)
Linear mixed model fit by REML ['lmerMod']
Formula: outcome ~ t1 + t1:as.factor(method) + (t1 subject)
 Data: bk
Control: lmerControl(check.nobs.vs.nRE = "warning")
REML criterion at convergence: 290.3
Scaled residuals:
Min 1Q Median 3Q Max
\(-1.9936-0.4127-0.1596 \quad 0.4288 \quad 1.7313\)
\begin{tabular}{lllll}
\multicolumn{2}{l}{ Random effects: } & & \\
Groups & Name & Variance & Std.Dev. Corr \\
subject & (Intercept) & 66.45 & 8.152 & \\
& t1 & 17.31 & 4.161 & 0.87 \\
Residual & & 27.20 & 5.215 &
\end{tabular}
Number of obs: 42, groups: subject, 21
Fixed effects:
\begin{tabular}{lrrr}
& Estimate & Std. Error & value \\
(Intercept) & 44.6190 & 2.1117 & 21.129 \\
t1 & 0.7057 & 2.9931 & 0.236 \\
t1:as.factor(method) 2 & -12.7553 & 3.8035 & -3.354
\end{tabular}
Correlation of Fixed Effects:
 (Intr) t1
t1
> anova(bklmera) # put fixed effects in SS metric
Analysis of Variance Table
 Df Sum Sq Mean Sq F value
```

```
t1 1 411.79 411.79 15.142
t1:as.factor(method) 1 305.84 305.84 11.246
> confint(bklmera)
Computing profile confidence intervals ...
 2.5% 97.5 %
.sig01 0.000000 Inf
.sig02 -1.000000 1.000000
.sig03 0.000000 Inf
.sigma 0.000000 Inf
(Intercept) 40.387933 48.850163
t1 -5.184306 6.589559
t1:as.factor(method)2 -20.263453 -5.247139
There were 50 or more warnings (use warnings() to see the first 50)
> # properly bombs on random effects because fitting line to 2 points |subject
> confint(bklmera, method = "boot", nsim = 1000, boot.type = "perc")
Computing bootstrap confidence intervals ...
 2.5 % 97.5 %
sd_(Intercept)|subject 4.9016210 11.555923
cor t1.(Intercept)|subject -0.3783355 1.000000
sd_\overline{t}1|\mathrm{ subject 0.6097805 7.555747}
sigma 3.4510062 6.530776
(Intercept) 40.5845364 48.945127
t1
t1:as.factor(method)2 -20.1664950 -5.184535
There were 50 or more warnings (use warnings() to see the first 50)
> # bootstrap gives reasonable bounds for random effects even
> # lmer 'a' does not include pretest diffs because of random assignment, can look at that
```

```
MTB > read 'a:\351\brogkut.dat' c1-c4
Entering data from file: a:\351\brogkut.dat
 42 rows read.
MTB > name c1 'method'
MTB > name c2 'prepost'
MTB > name c3 'outcome'
MTB > name c4 'subject'
MTB > info
\begin{tabular}{llr}
Column & Name & Count \\
C1 & method & 42 \\
C2 & prepost & 42 \\
C3 & outcome & 42 \\
C4 & subject & 42
\end{tabular}
REPEATED MEASURES ANALYSIS
```

```
MTB > glm outcome = subject(method) + method|prepost;
```

MTB > glm outcome = subject(method) + method|prepost;
SUBC> random subject;
SUBC> ems;
SUBC> means method|prepost.
General Linear Model

```
\begin{tabular}{|c|}
\hline Factor & Type & ls & & alue & 3 & 4 & 5 & 6 & 7 & 8 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & & 8 \\
\hline & & & & 910 & 11 & 12 & 13 & & & & & & & & & & & & \\
\hline method & fixed & & 1 & & & & & & & & & & & & & & & & \\
\hline prepost & fixed & & 1 & & & & & & & & & & & & & & & & \\
\hline
\end{tabular}

Analysis of Variance for outcome, using Adjusted SS for Tests
\begin{tabular}{lrrrrrr}
Source & DF & Seq SS & Adj SS & Adj MS & F & P \\
subject(method) & 19 & 4440.00 & 4440.00 & 233.68 & 6.52 & 0.000 \\
method & 1 & 847.48 & 847.48 & 847.48 & 3.63 & 0.072 \\
prepost & 1 & 542.88 & 317.69 & 317.69 & 8.86 & 0.008 \\
method*prepost & 1 & 407.41 & 407.41 & 407.41 & 11.36 & 0.003 \\
Error & 19 & 681.21 & 681.21 & 35.85 & & \\
Total & 41 & 6918.98 & & & &
\end{tabular}

Unusual Observations for outcome
\begin{tabular}{rrrrrr}
Obs & outcome & Fit & StDev Fit & Residual & St Resid \\
3 & 35.0000 & 44.6250 & 4.4908 & -9.6250 & -2.43 R \\
4 & 55.0000 & 45.3750 & 4.4908 & 9.6250 & 2.43 R
\end{tabular}
\(R\) denotes an observation with a large standardized residual.
Expected Mean Squares, using Adjusted SS
\begin{tabular}{ll}
Source & Expected Mean Square for Each Term \\
1 subject(method) & \((5)+2.0000(1)\) \\
2 method & \((5)+2.0000(1)+Q[2,4]\) \\
3 prepost & (5) \(+Q[3,4]\) \\
4 method*prepost & (5) \(+Q[4]\) \\
5 Error & \((5)\)
\end{tabular}

Error Terms for Tests, using Adjusted SS
\begin{tabular}{lrrl}
Source & Error DF & Error MS & Synthesis of Error MS \\
1 subject(method) & 19.00 & 35.85 & \((5)\) \\
2 method & 19.00 & 233.68 & \((1)\) \\
3 prepost & 19.00 & 35.85 & \((5)\) \\
4 method*prepost & 19.00 & 35.85 & \((5)\)
\end{tabular}

Variance Components, using Adjusted SS

Signif. codes: 0 '***' 0.001 ،**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Error: Within
 that (407) matches SAS PROC GLM
\#so let's try an lmer model: level 1 outcome ~ time; level 2 slope (diff score) depends
```

> bklmera = lmer(outcome ~ I(time - 1) + I(time-1):as.factor(method) + (time|subject),

```
> summary(bklmera)
Linear mixed model fit by REML
Formula: outcome ~ I(time - 1) + I(time - 1):as.factor(method) + (time | subject)
 Data: bk
 AIC BIC logLik deviance REMLdev
 305.7 317.9-145.9 \(301.1 \quad 291.7\)
Random effects:
 Groups Name Variance Std.Dev. Corr
 subject (Intercept) 35.0005 .9161
 time \(21.455 \quad 4.6320 \quad 0.220\)
 Residual \(25.125 \quad 5.0124\)
Number of obs: 42, groups: subject, 21
Fixed effects:
\begin{tabular}{|rrr|r|}
& Estimate & Std. Error & t value \\
(Intercept) & 44.619 & 2.112 & 21.130 \\
I(time - 1) & -5.672 & 1.902 & -2.981 \\
I(time - 1):as.factor (method)1 & 6.378 & 1.902 & 3.354 \\
\hline
\end{tabular}

Correlation of Fixed Effects:
(Intr) I(t-1)
I(time - 1) 0.028
I(-1):s.()1 \(0.000 \quad 0.238\)
```

> anova(bklmera)
Analysis of Variance Table
Df Sum Sq Mean Sq F value
I(time - 1) 1 380.69 380.69 15.152
I(time - 1):as.factor(method) 1 282.54 282.54 11.246

# so interaction matches F-statistic from repeated measures anova

> 3.354^2
[1] 11.24932

# AND lmer gets the occasions (time) term "correct" in the test statistic

> 2.981^2
[1] 8.886361

# this matches F-statistic in publication (and SAS) repeated measures output of 8.86 fo

# whereas the aov above has F-statistic 15.1

# SS not comparable with anova because here were are modeling level 1 params, not outco

So before looking at other small details, let us declare an lmer victory over non-othog

```
```


# even if you let method be numerical (1,2) inadvertently it works ok here

> bklmer = lmer(outcome ~ I(time - 1) + I(time-1):method + (time|subject), data = bk)
> bklmer
Linear mixed model fit by REML
Formula: outcome ~ I(time - 1) + I(time - 1):method + (time | subject)
Data: bk
AIC BIC logLik deviance REMLdev
304.3 316.5 -145.2 301.1 290.3
Random effects:
Groups Name Variance Std.Dev. Corr
subject (Intercept) 35.000 5.9161
time 21.455 4.6320 0.220
Residual
25.125 5.0124
Number of obs: 42, groups: subject, 21
Fixed effects:

	Estimate	Std. Error	t value
(Intercept)	44.619	2.112	21.130
I(time - 1)	13.461	6.429	2.094
I(time - 1):method	-12.755	3.804	-3.354

Correlation of Fixed Effects:
(Intr) I(t-1)
I(time - 1) 0.008
I(tm-1):mth 0.000-0.958
> anova(bklmer)
Analysis of Variance Table
Df Sum Sq Mean Sq F value
I(time - 1) 1 380.69 380.69 15.152
I(time - 1):method 1 282.54 282.54 11.246

```
```


# more general model also lets intercept (timel) differ by method, but randomization sh

```
more general model also lets intercept (timel) differ by method, but randomization sh
> bklmer2a = lmer(outcome ~ I(time - 1)*as.factor(method) + (time|subject), data = bk)
> bklmer2a = lmer(outcome ~ I(time - 1)*as.factor(method) + (time|subject), data = bk)
> bklmer2a
> bklmer2a
Linear mixed model fit by REML
Linear mixed model fit by REML
Formula: outcome ~ I(time - 1) * as.factor(method) + (time | subject)
Formula: outcome ~ I(time - 1) * as.factor(method) + (time | subject)
 Data: bk
 Data: bk
 AIC BIC logLik deviance REMLdev
 AIC BIC logLik deviance REMLdev
 301.1 315 -142.6 300.6 285.1
 301.1 315 -142.6 300.6 285.1
Random effects:
Random effects:
 Groups Name Variance Std.Dev. Corr
 Groups Name Variance Std.Dev. Corr
 subject (Intercept) 36.693 6.0575
 subject (Intercept) 36.693 6.0575
 time 21.058 4.5889 0.241
 time 21.058 4.5889 0.241
 Residual 25.324 5.0323
 Residual 25.324 5.0323
Number of obs: 42, groups: subject, 21
Number of obs: 42, groups: subject, 21
Fixed effects:
Fixed effects:
Estimate Std. Error t value
Estimate Std. Error t value
(Intercept) 46.375 3.473 13.354
(Intercept) 46.375 3.473 13.354
I(time - 1) 0.750 2.994 0.251
I(time - 1) 0.750 2.994 0.251
as.factor(method)2 -2.837 4.414 -0.643
as.factor(method)2 -2.837 4.414 -0.643
I(time - 1):as.factor(method)2 -12.827 3.805 -3.371
I(time - 1):as.factor(method)2 -12.827 3.805 -3.371
Correlation of Fixed Effects:
Correlation of Fixed Effects:
 (Intr) I(t-1) as.()2
 (Intr) I(t-1) as.()2
I(time - 1) 0.029
I(time - 1) 0.029
as.fctr(m)2 -0.787 -0.023
as.fctr(m)2 -0.787 -0.023
I(-1):s.()2 -0.023 -0.787 0.029
I(-1):s.()2 -0.023 -0.787 0.029
> anova(bklmer2a)
```

> anova(bklmer2a)

```
```

Analysis of Variance Table

I(time - 1)	1	383.72	383.72	15.1525
as.factor(method)	1	7.47	7.47	0.2952

I(time - 1):as.factor(method) 1 287.73 287.73 11.3621

```
```

> summary(bklmer2a)
Linear mixed model fit by REML
Formula: outcome ~ I(time - 1) * as.factor(method) + (time | subject)
Data: bk
AIC BIC logLik deviance REMLdev
301.1 315-142.6 300.6 285.1
Random effects:
Groups Name Variance Std.Dev. Corr
subject (Intercept) 36.693 6.0575
time 21.058 4.5889 0.241
Residual 25.324 5.0323
Number of obs: 42, groups: subject, 21
Fixed effects:
(Intercept) 46.375 3.473 13.354
I(time - 1) 0.750 2.994 0.251
as.factor(method)2 -2.837 4.414 -0.643
I(time - 1):as.factor(method)2 -12.827 3.805 -3.371
Correlation of Fixed Effects:
(Intr) I(t-1) as.()2
I(time - 1) 0.029
as.fctr(m)2 -0.787 -0.023
I(-1):s.()2 -0.023 -0.787 0.029

```
```

> anova(bklmer, bklmer2a) \# the extra method main effect here doesn't help
Data: bk
Models:
bklmer: outcome ~ I(time - 1) + I(time - 1):method + (time | subject)
bklmer2a: outcome ~ I(time - 1) * as.factor(method) + (time | subject)
Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)
bklmer 7 315.11 327.28 -150.56
bklmer2a 8 316.65 330.55 -150.32 0.4654 1 0.4951
> install.packages("ez") \# I tried the "ez" package, but didn't help with anova

```

Another approach to BK ; pretest as covariate or t-test on posttest; see review quests
AivcouA CNRL equations
precursor \(t\)-test \(y=\beta_{0}+\beta_{1} \in \quad \hat{\beta}_{1} /\) se \(\left(\hat{\beta}_{1}\right)\)
\(G=0,1 \quad\) nip
group poolual t -test
\[
\begin{aligned}
&=00^{2} \\
& \text { ancona }
\end{aligned}
\]
\[
\hat{\gamma}_{1}=\bar{y}_{1}-\bar{y}_{0}-\hat{\gamma}_{p}\left(\bar{x}_{1}-\bar{x}_{0}\right)
\]
constant treatment effect
\[
\hat{\gamma}_{2}=\hat{\gamma}_{p}
\]
aveculin slopes
\[
y=\beta_{1}+\beta_{2} G+\beta_{3} X+\beta_{4} X G
\]

Pinteraction" term```

[^0]: Fitting a line to two points

[^1]: This paper results from the Arthur M. Sackler Colloquium of the National Academy of Sciences, "Digital Media and Developing Minds," held October 14-16, 2015, at the Arnold and Mabel Beckman Center of the National Academies of Sciences and Engineering in Irvine, CA. The complete program and video recordings of most presentations are available on the NAS website at www.nasonline.org/Digital_Media_and_Developing_Minds.
 Author contributions: A.T.P., J.D.S., and J.G.H. designed research; A.T.P., J.D.S., and J.G.H. performed research; A.T.P. and J.G.H. analyzed data; and A.T.P., J.D.S., and J.G.H. wrote the paper.

 The authors declare no conflict of interest.
 This article is a PNAS Direct Submission.
 Published under the PNAS license.
 ${ }^{1}$ To whom correspondence should be addressed. Email: jay.g.hull@dartmouth.edu.

[^2]: Corresponding Author:
 Mark Schaller, Department of Psychology, University of British Columbia, 2136 West Mall,Vancouver, British Columbia V6T IZ4, Canada E-mail: schaller@psych.ubc.ca

[^3]: Address correspondence to Tim Kasser, Box K-83, Knox College Galesburg, IL 61401, e-mail: tkasser@knox.edu.

[^4]: * Donna R. Brogan is Professor and Michael H. Kutner is Associate Professor in the Statistics and Biometry Department, School of Medicine, Emory University, Atlanta, GA 30322. Work on this article was partially supported by NCI Contract No. CB-74101 and USPHS Grant No. RR39.

