Statistics 222, Education 351A Autumn 2020

Statistical Methods for Longitudinal Research

Autumn 2020 Remote Asynchronous Instruction

David Rogosa Sequoia 224, rag $\{\mathrm{AT}\}$ stanford $\{\mathrm{DOT}\}$ edu
Course web page: http://rogosateaching.com/stat222//
To see full course materials from Autumn 2018 go here
Course Welcome and Logistics (first day stuff, to be posted in August, call it Week0)
Lecture slides, week 0 (pdf) Audio companion, week 0
For recreation of in-classroom experience, linked below are youtube versions of the music I play
before starting lecture and after lecture concludes. Some may wish to reverse that ordering.

Registrar's information
STATS 222 (Same as EDUC 351A): Statistical Methods for Longitudinal Research Units: 2
Grading Basis: Letter or Credit/No Credit
Course Description:
STATS 222: Statistical Methods for Longitudinal Research (EDUC 351A)
Research designs and statistical procedures for time-ordered (repeated-measures) data.
The analysis of longitudinal panel data is central to empirical research on learning, development, aging, and the effects of interventions. Topics include: measurement of change, growth curve models, analysis of durations including survival analysis,
experimental and non-experimental group comparisons, reciprocal effects, stability.
See http://rogosateaching.com/stat222/. Prerequisite: intermediate statistical methods
Terms: Aut | Units: 2 | Grading: Letter or Credit/No Credit
Instructors: Rogosa, D. (PI)

Preliminary Course Outline

Week 1. Course Overview, Longitudinal Research; Analyses of Individual Histories and Growth Trajectories
Week 2. Introduction to Data Analysis Methods for assessing Individual Change for Collections of Growth Curves (mixed-effects models)
Week 3. Analysis of Collections of growth curves: linear, generalized linear and non-linear mixed-effects models
Week 4. Special case of time-1, time-2 data; Traditional measurement of change for individuals and group comparisons
Week 5. Assessing Group Growth and Comparing Treatments: Traditional Repeated Measures Analysis of Variance and Linear Mixed-effects Models
Week 6. Comparing group growth continued: Power calculations, Cohort Designs, Cross-over Designs, Methods for missing data, Observational studies.
Week 7. Analysis of Durations: Introduction to Survival Analysis and Event History Analysis
Weeks 8-9. Further topics in analysis of durations: Diagnostics and model modification; Interval censoring, Time-dependence, Recurrent Events, Frailty
Models, Behavioral Observations and Series of Events (renewal processes)
Dead Week. Assorted Special Topics (enrichment) and Overflow (weeks 1-8): Assessments of Stability (including Tracking), Reciprocal Effects, (mis)Applications of Structural Equation Models, Longitudinal Network Analysis

Texts and Resources for Course Content

1. Garrett M. Fitzmaurice Nan M. Laird James H. Ware Applied Longitudinal Analysis (Wiley Series in Probability and Statistics; 2nd ed 2011)

Text Website second edition website Text lecture slides
2. Judith D. Singer and John B. Willett . Applied Longitudinal Data Analysis: Modeling Change and Event Occurrence New York: Oxford University Press, March, 2003.
Text web page Text data examples at UCLA IDRE Powerpoint presentations good gentle intro to modelling collections of growth curves (and survival analysis) is Willett and Singer (1998).
3. Douglas M. Bates. Ime4: Mixed-effects modeling with R February 17, 2010 Springer (chapters). A merged version of Bates book: 1 me4: Mixed-effects modeling with R January 11, 2010 has been refound
Manual for R-package lme 4 and mlmRev, Bates-Pinheiro book datasets.
Additional Doug Bates materials. Collection of all Doug Bates lme4 talks Mixed models in R using the lme4 package Part 2: Longitudinal data, modeling interactions Douglas Bates 8th International Amsterdam Conference on Multilevel Analysis 2011-03-16 another version
Original Bates-Pinheiro text (2000). Mixed-Effects Models in S and S-PLUS (Stanford access). Appendix C has non-linear regression models. Fitting linear mixed-effects models using lme4, Journal of Statistical Software Douglas Bates Martin Machler Ben Bolker. Technical topics: Mixed models in R using the lme4 package Part 4: Theory of linear mixed models
4. A handbook of statistical analyses using R (second edition). Brian Everitt, Torsten Hothorn CRC Press, Index of book chapters Stanford access Longitudinal chapters: Chap11 Chap12 Chap13. Data sets etc Package 'HSAUR2' August 2014, Title A Handbook of Statistical Analyses Using R (2nd Edition)
There is now a third edition of HSAUR, but full text not yet available in crcnetbase.com. CRAN HSAUR3 page with Vignettes (chapter pieces) and data in reference manual
5. Peter Diggle , Patrick Heagerty, Kung-Yee Liang , Scott Zeger. Analysis of Longitudinal Data 2nd Ed, 2002

Amazon page Peter Diggle home page Book data sets
A Short Course in Longitudinal Data Analysis Peter J Diggle, Nicola Reeve, Michelle Stanton (School of Health and Medicine, Lancaster University), June 2011 earlier version associated exercises: Lab 1 Lab2 Lab3
6. Longitudinal and Panel Data: Analysis and Applications for the Social Sciences by Edward W. Frees (2004). Full book available and book data and

AIDS in Belgium example, (from Simon Wood) single trajectory, count data using glm. Rogosa R session for aids data
aditional expositions of AIDS data, Poisson regression: Duke Kentucky
A very comprehensive introduction to analysis of count data Regression Models for Count Data in R Achim Zeileis Christian Kleiber Simon Jackman (Stanford University)

Non-linear models, esp logistic. From week 1, also week 3 Self-Starting Logistic model SSlogis help page, do ?sslogis post of annotated logistic curve with SSlogis arguments

Trend in Proportions: College fund raising example prop.trend.test help page ?prop.trend.test in R-session.
Trend in proportions, group growth, Cochran-Armitage test. Expository paper: G. Salanti and K. Ulm (2003): Tests for Trend in Binary Response (SU access)

WEEK 1 Review Questions

1. For the straight-line (constant rate of change) fit example to subj 372 in the sleepstudy data. Obtain a confidence interval for the rate of change from the OLS fit. Now compare the OLS fit with day-to-day differences. Under the constant rate of change model these 9 day to day differences also estimate the rate of change. Obtain a estimate of the mean and a confidence interval for rate of change from these first differences. Compare with OLS results. Solution for question 1
2. Revisit the Belgium Aids data example (counts of new cases by year). Use the parameter estimates for am2 (quadratic in time glm fit) to compute by hand (or calculator) the values of the glm fit at year $=5$ and year $=9$. Compare those values with results from the model am2 using predict Solution for question 2
3. Paul Rosenbaum has a little data set on growth in vocabulary that I grabbed from his Wharton coursesite. Following the chicks class example, plot these data and try to fit a logistic growth curve to these data. What is the estimate of the final vocab level (asymptote)? Compare the data and the fits from the logistic growth curve.
For reference, Self-Starting Logistic model SSlogis help page, do ?SSlogis post of annotated logistic curve with SSlogis arguments additional tools in the grofit package

Solution for question 3
4. More on autocorrelation[extension/enrichment]. In standard regression courses you may have seen in addition to Durbin-Watson test for $\operatorname{AR}(1)$ (dwtest()), versions of the Cochrane-Orcutt procedure for remediation. Uses a first difference transformation of the data with an estimate of the autocorrelation (therefore hopeless when you have 3,45 observations per unit). To illustrate the statements in class and the similarities to OLS result, the solution to this problem does the straight-line and polynomial examples from the Week 1 class handout using the R-package orcutt

Solution for question 4

WEEK 1 Exercises

1. Straight-line fits for NC Fem data: North Carolina Achievement Data (see Williamson, Applebaum, Epanchin, 1991). These education data are eight yearly observations on achievement test scores in math (Y), for 277 females each followed from grade 1 to grade 8 , with a verbal ability background measure (W).
North Carolina, female math performance (also in Rogosa-Saner) North Carolina data (wide format); NC data (long)
a. Here we will use the 8 yearly observations on female ID 705810, which you can obtain from either the long form or wide form of these data. For that female, what is the rate of improvement over grades 1 through 8 ? Compare the observed improvement for grades 1 through 8 (the difference score) with the amount of improvement indicated by the model fit. Obtain a 95% confidence interval for each (if possible).
b. More on OLS and the difference score. Refer to an old publication: A growth curve approach to the measurement of change. Rogosa, David; Brandt, David; Zimowski, Michele Psychological Bulletin. 1982 Nov Vol 92(3) 726-748 APA record direct link; Equation 4, page 728, shows a useful form for the OLS slope. (actually reading the first three pages of that pub is a decent intro to the growth curve topic.) For equally spaced data, that Eq (4) gives a useful equivalence between difference scores (amounts of change) and OLS slopes (multiply rates of change by time interval). For the part a NC data show that the OLS slope can be expressed as a weighted sum of the four differences: $\{8-1,7-2,6-3,5-4\}$. [to say that better \{score at time 8 minus score at time 1 ; score at time 7 minus score at time $2 ; \ldots\}$ and so forth]
Seperately, consider three observations at taken at equally spaced time intervals: What is a simple expression for the OLS slope (rate of change)?
2. Revisit the Berkeley Growth Data example from week 1 lecture. Consider the quadratic (polynomial degree 2) fit to these data, and also a (innapropriate?) constant-rate-of-change (straight-line) fit to these data. Then refer to Seigel, D. G. Several approaches for measuring average rates of change for a second degree polynomial. The American Statistician, 1975, 29, 36-37. JStor Link for equivalences for the slope of the straight-line fit to an average rate of change for the quadratic fit. Compare Seigel 'Approach 3" to 'Approach 1'.

Week 2. Analysis of collections of growth curves (Mixed-effects Models, Imer) Constant rate of change models

Lecture Topics. Analyses of collections of growth curves.

1. Plots, description and SFYS (smart first year student) analyses.
2. Mixed effects models using 1mer . Growth modelling handout

Class Examples

1. Data frame sleepstudy available in lme4 package.

Music to accompany long-distance truck driver data: Flying Burrito Brothers "Six Days on the Road"
a. Published Treatments, Sleepstudy example

Source Publication: Belenky, G., Wesensten, N. J., Thorne, D. R., Thomas, M. L., Sing, H. C., Redmond, D. P., Russo, M., \& Balkin, T. (2003). Patterns of performance degradation and restoration during sleep restriction and subsequent recovery: A sleep dose-response study. Journal of Sleep Research, 12(1), 1-12.
Sleepstudy data analysis from Doug Bates lme4 book lme4: Mixed-effects modeling with R February 17, 2010 (draft chapters) Chapter 4: Sleepstudy example or a set of Bates slides for the sleepstudy example
Why lmer (lme4) does not provide p-values for fixed effects: Doug Bates $\quad l m e r$, p-values and all that
A number of add-on packages seek to provide lmer p-values.(We show afex package in Review Question 1 with 2020 update).
b. Class Materials, Sleepstudy example

Individual plots (frame-by-frame) Plot of straight-line fits Initial descriptive analyses (SFYS)
Sleepstudy, Bates Ch 4, lme4 analyses, ascii Sleepstudy class handout, pdf scan
more Doug Bates Slides (pdf pages 8-28)
2. North Carolina, female math performance (also in Rogosa-Saner)

North Carolina data (wide format); NC data (long). _plots for NC data
Data formatting: wide to long North Carolina data (wide format); making the "Long" version
The UCLA archive has a tutorial using built-in reshape function (rather than the reshape package).
North Carolina example. wide-form descriptives, background, _plots Initial SFYS analyses of NC data, ascii
Model Comparisons for North Carolina, female math performance ascii version NC class handout, pdf scan model ncCon2 without redundent model term NC bootstrap results (SAS).
3. Brain Volume Data, in-class modeling exercise: analyses from "Variation in longitudinal trajectories of regional brain volumes of healthy men and women (ages 10 to 85 years) measured with atlas-based parcellation of MRI" cartoon plot of Lateral Ventricles data; actual data plot of Lateral
Ventricles data; development of lmer (random effect)_growth models

Background and Resources

Technical Formulation and extensions

Estimation in lmer.
Fitting linear mixed-effects models using lme4, Journal of Statistical Software Douglas Bates Martin Machler Ben Bolker also Rnews 2005 pp.27-30
Bates book, Chapter 5, Computational Methods. Bates talk slides: Mixed models in R using the 1 me4 package Part 4: Theory of linear mixed models Extensions and Alternatives, lmer.
Plots and diagnostics: Package Influence.me RJournal intro Package mertools An Introduction to merTools Also, Prediction Intervals
Non-Gaussian modelling. Hierarchical Generalized Linear Models, Package hglm Hierarchical Generalized Linear Models, R Journal December 2010.
Extensions of lme 4 modeling: Package npmlreg Nonparametric Maximum Likelihood (NPML) estimation;
Package robustlmm: An R Package for Robust Estimation of Linear Mixed-Effects Models
Package RLRsim Title Exact (Restricted) Likelihood Ratio Tests for Mixed and Additive Models

Data Examples

North Carolina Data also in (with full development of the modelling) Longitudinal Data Analysis Examples with Random Coefficient Models. David Rogosa; Hilary Saner . Journal of Educational and Behavioral Statistics, Vol. 20, No. 2, Special Issue: Hierarchical Linear Models: Problems and Prospects. (Summer, 1995), pp. 149-170. Jstor
Douglas Bates class resource item \#3, Texts and Resources. Other Doug Bates materials: Three packages, "SASmixed", "mlmRev" and "MEMSS" with examples and data sets for mixed effect models
North Carolina Data also in (with full development of the modelling) Longitudinal Data Analysis Examples with Random Coefficient Models. David Rogosa; Hilary Saner . Journal of Educational and Behavioral Statistics, Vol. 20, No. 2, Special Issue: Hierarchical Linear Models: Problems and Prospects. (Summer, 1995), pp. 149-170. Jstor Data sets for Rogosa-Saner
Additional talk materials: An Assortment of Longitudinal Data Analysis Examples and Problems 1/97, Stanford biostat. Overview and Implementation for Basic Longitudinal Data Analysis CRESST Sept '97. Another version (short) of the expository material is from the Timepath '97 (old SAS progranms) site: Growth Curve models; Data Analysis and Parameter Estimation ; Derived quantities for properties of collections of growth curves and bootstrap inference procedures

WEEK 2 Review Questions

1. More sleepstudy. Confidence interval and p-values. Add on, extension to class example.

I start by fitting the lmer model for the collection of growth curves: sleeplmer = 1mer(Reaction \sim Days + ($1+$ Days|Subject), sleepstudy).
Then try out confint from lme4 (link to manual using likelihood profile or bootstrap methods.
Then look at the pvalues entry in the manual and try out add-on packages, esp for p -values for the fixed effects.

Solution for Review Question $1 \quad 2017$ redo/update using 3.3.3 (barebones)

2. Ramus Data example. Example consists of 4 longitudinal observations on each of 20 cases. The measurement is the height of the mandibular ramus bone (in mm) for boys each measured at $8,8.5,9,9.5$ years of age. These data, which have been used by a number of authors (e.g., Elston and Grizzle 1962), can be found in Table 4.1 of Goldstein (1979). Ramus data example long form for Ramus data tutorial on creating long form data manipulation and 2017 redo/check of widetolong. Use 1 mList to obtain the 20 OLS fits, with the initial time set to 8 years of age, i.e. intercepts are fits for the time of initial measurement (not $t=0$). Fit the lmer model for the collection of growth curves (using initial time $=8$); verify that fixed effects are the sample means (over persons) of the lmList intercepts and slopes. Verify that the random effects variance for "age" (i.e. slopes) is the method-ofmoments estimate for $\operatorname{Var}($ theta). Compare the random effect estimates (ranef) which borrow strength for each subject with the OLS estimates from 1 mList (c.f. Bates Chap 4 discussion of sleepstudy data)

$$
\text { Solution for Review Question } 2
$$

3. Artificial data example (used in Myths chapter to illustrate time-1,time-2 data analysis) Two part artificial data example. The bottom frame (the X 's) is 40 subjects each with three equally spaced time observations (here in wide form).For these the fallible " X " measurements (constructed by adding noise to the Xi measurements). Follow the class examples 'wide-to-long' and obtain the plot showing each subject's data and straight-line fit. Use lmList to obtain the 40 slopes for the straight-line fits.

Solution for Review Question 3

4. More with North Carolina data

a. identify the fastest and slowest growth among the 277 females. Compare medians of growth rates for females with verbal ability (Z) at or above 106 with that for females with verbal ability below 106. Show side-by-side boxplots.
b. In the class handout version of the NC analyses (and other postings, but not all) the first thing to do was make the 'time' variable have intitial value $=0$ (making the intercept of a straight line fit correspond to level at initial time): i.e. 1 to 8 becomes 0 to 7 . Obtain 1 mList results and fit the ncUnc lmer model (straight-line growth, no Z) using time 1 to 8 . Comment on differences of these analyses with those using timeInt in the class handout. In particular, look at the correlation of change and initial status. The correlation between observed change and observed initial status using timeInt was .279 from lmer (Correlation of Fixed Effects) and also from lmList (you should confirm that). What is the result you obtain using time rather than timeInt? The mle of of the correlation of 'true' change and 'true' initial status is .651 using timeInt. What do you obtain using time?.

Solution for Review Question 4
5. xyplot with large sample sizes.

North Carolina data has 277 subjects, a frame-by-frame display of individuals requires subsampling. Construct a plot for 24 (arbitrary) individuals data trajectories.

WEEK 2 Exercises

1. Tolerance data [note: 10/12/17 data location updated]

A subsample of data from the National Youth Survey is obtained in long-form by
read.table("https://stats.idre.ucla.edu/wp-content/uploads/2016/02/tolerance1_pp.txt", sep=",", header=T)
and in wide form by
read.table("https://stats.idre.ucla.edu/wp-content/uploads/2016/02/tolerance1.txt", sep=",", header=T)
Yearly observations from ages 11 to 15 on the tolerance measure (tolerance to deviant behavior e.g. cheat, drug, steal, beat; larger values indicates more tolerance on a 1 to4 scale). Also in this data set are gender (is_male) and an exposure measure obtained at age 11 (self report of close friends involvement in deviant behaviors). note: the time measure is age - 11 .
i. obtain individual OLS fits (tolerance over time) and plot the collection of those straight-lines. Provide descriptive statistic summaries for the rate of change in tolerance and initial level.
ii. fit a mixed effects model for tolerance over time (unconditional) for this collection of individuals. Obtain interval estimates for the fixed and random effects. Show that the fixed effects estimates correspond to quantities obtained in part i. Explain.
iii. Investigate whether the exposure measure is a useful predictor of level or rate of change in tolerance. What appears to be the best fitting mixed model for these data using these measures? Show specifics.

2. lmer/lme vs lm

Consider the sleepstudy and Ramus examples, collections of growth trajectories with no exogenous variable. Ramus Data example. Example consists of 4 longitudinal observations on each of 20 cases. The measurement is the height of the mandibular ramus bone (in mm) for boys each measured at $8,8.5,9$, 9.5 years of age. These data, which have been used by a number of authors (e.g., Elston and Grizzle 1962), can be found in Table 4.1 of Goldstein (1979).

Ramus data example long form for Ramus data tutorial on creating long form data manipulation.
Fitting the lmer models with Formula: Reaction $\sim 1+$ Days + (1 + Days | Subject) or Formula: ramus $\sim I($ age -8$)+($ age | subj) has motivated the student question, what is going on here beyond what 1 m would do? So let's look at what 1 m would do in these examples. Verify (or disprove) the assertion that the fixed effects from lmer, which we have seen are the averages of the individual fit parameter estimates (i.e. lmList), and therefore the coefficients of the average growth curve are identical to the fit from 1 m (which ignores the existence of individual trajectories). Compare the results of the 1 m and lmer analyses for these two data sets.
3. Early Education data (From Bates and Willett-Singer).

Data on early childhood cognitive development described in Doug Bates talk materials (pdf pages 49-52). Obtain these data from the R-package "mlmRev" or the Willett-Singer book site (in our week 1 intro links). Data are in long form and consist of 3 observations 58 treatment and 45 control children; see the Early entry in the mlmRev package docs. Produce the plot of individual trajectories shown pdf p.49, Bates talk. (note:Bates does connect-the-dots, we have done straight-line fit, your choice). Show five-number summaries of rates of impovement in cognitive scores for treatment and control groups. Develop and fit the fm12 lmer model shown in Bates pdf p. 50 (note fm 12 allows trt to effect rates of improvement but not level;). Interpret results. Note: this moves us into the comparing groups topics, where the individual attribute is group membership.
4. Standardizing is always a bad idea is a good motto for life, especially with longitudinal data.

Artificial data example from Review Question 3 (used in Myths chapter to illustrate time-1,time-2 data analysis) Start out with the "X" data, and standardize (i.e. transform to mean 0 , var 1) at each of the 3 time points. Note "scale" will do this for you (in wide form). For the standardized data obtain the plot showing each subject's data and straight-line fit. What do you have here? Compare the results the mixed-effects models fitting the collection of straight-line growth curves for the measured and standardized data.

Analyses of Collections
of Growth Corves
Descriptive Analyses (smart first year student) SFYS Fit Yon regressions (ImList)
describe $\hat{\alpha}_{0} \hat{\alpha}_{1}$ plots etc $\hat{\alpha}_{1}$ । z_{0} initial sitivil systematic indic differences $(z$) in chicenge $\operatorname{cor}\left(\hat{\alpha}_{1}, z\right)$ plots $\hat{\alpha}_{1}$, \qquad etc
Mixed effects models (lmer)
A. unconditional sleep

Level $1 \quad y=\alpha_{0}^{2}+\alpha_{1} t+\varepsilon$
gradient initstatrs straight-
line green line grout
each unit
Level $2 \quad \alpha_{0}=\gamma_{00}+u_{0}$

$$
\alpha_{1}=\gamma_{10}+u_{1}
$$

Combined (estimation)
model $y=\gamma_{00}+\gamma_{10} t+\left[\varepsilon+4_{0}+u_{1}\right]$
fixed
B. Conditional Model exoguar z, ω systematic indio
Lend $1 \quad y=\alpha_{0}+\alpha_{1} t+d_{1}$
Level 2

$$
\begin{aligned}
& \alpha_{0}=\gamma_{00}+\gamma_{01} z+u_{0} \\
& \alpha_{1}=\gamma_{10}+\gamma_{11} z+u_{1}
\end{aligned}
$$

Combined $\quad y=\gamma_{00}+\gamma_{01} z+\gamma_{10} t+\gamma_{11} z \cdot t$

$$
+\left[\varepsilon+\dot{u}_{0}+u_{1}\right]
$$

m del form $y \sim z * t$ see note on
redundant tine $\operatorname{Ln} t$

Longitudinal Panel data
observations $X_{i p}$
Taken at Time $t_{i}(i=1, \ldots T)$
FOR INDIVIDUAL $p(p=1, \cdots, n)$
T "Waves" of data
Measurement model

$$
X_{i p}=\varepsilon_{i p}+\epsilon_{i p}
$$

"True Score" $\varepsilon_{i p}$
GROWTH MODELS

$$
\xi_{p}(t)=f(\xi, t)
$$

Collection of Growth Curves
For individual p, growth curve for single measure $\xi_{p}(t)$
Parameters of growth curve vary over
Examples: Straight-line growth

$$
\xi_{p}(t)=\xi_{p}(0)+\theta_{p} t
$$

Exponential growth

$$
\xi_{p}(t)=\lambda_{p}-\left(\lambda_{p}-\xi_{p}(0)\right) e^{-\gamma_{p} t}
$$

Alternative models
Autoregressive process/
Simplex models

Dictum:
Individual trajectory is the key starting point for conceptualization, modelling, data analysis.
In general model processes that generate the (individual's) data.

Models for Collections of Growth Curves

Straight-line Growth Curve Formulation. attribute η, which exhibits systematic change over time. For individual p, growth curve in η is $\eta_{p}(t)$.

$$
\eta_{p}(t)=\eta_{p}(0)+\theta_{p} t
$$

Note: Rewrite using the centering parameter $\mathrm{t}^{0} ; \theta$ and $\eta\left(\mathrm{t}^{\circ}\right)$ are uncorrelated over the population of individuals $t^{\circ}=-\sigma_{n(0) e^{\prime}} / \sigma_{\theta}^{2}$

$$
\eta_{p}(t)=\eta_{p}\left(t^{0}\right)+\theta_{p}\left(t-t^{0}\right)
$$

Constant rate of change θ_{p}-- first two moments $\mu_{\theta} \sigma_{\theta}^{2}$ For systematic individual differences in growth (i.e. correlates of change) exogenous characteristic W. Conditional expectation $\mathrm{E}(\theta \mid \mathrm{W})=\mu_{\theta}+\gamma\left(\mathrm{W}-\mu_{\mathrm{w}}\right)$, With no measured exogenous variable, this between-unit model is $\mathrm{E}(\theta \mid \mathrm{W})=\mu_{\theta}$.

Shown below 15 straight-line growth curves corresponding to pop. parameters $t^{0}=2 ; \sigma_{\theta}^{2}=5.333 ; \sigma_{n\left(t^{\circ}\right)}^{2}=48 ; \quad \theta \sim U[1,9], \eta\left(t^{\circ}\right) \sim U[38$, 62]. correlations among $\eta\left(t_{i}\right)$ for observation times $\rho_{n(1) n(4)}=.614$, $\rho_{\mathrm{n}(1)(6)}=.316, \rho_{\mathrm{n}(4) \mathrm{n}(6)}=.943$. For $\mathrm{Y}, \operatorname{var}(\epsilon)=5$, the pop. correlations are $\rho_{Y(1) Y(4)}=.567, \rho_{Y(1) Y(6)}=.297, \rho_{Y(4) Y(6)}=.894$.
Alternative: exponential growth to an asymptote Exponential growth curve with asymptote λ_{p} and curvature δ

Stragt-lineGronth

Expmatid Growth

Rogosa J anuary 30

Analyses of Collections
of Growth Curves
Descriptive Analyses (smar thirst ycarstudent) SFYS Fit Yon regressions (ImList)
describe $\hat{\alpha}_{0} \hat{\alpha}_{1}$ plots etc $\hat{\alpha}_{2}-\frac{1}{2}$ sintinit systematic indic differences (z) in change $\operatorname{cor}\left(\hat{\alpha}_{1}, z\right)$ plots $\hat{\alpha}_{1}$

Mixed effects models (lamer)
A. unconditional Sleep

$$
\begin{gathered}
\text { level at tron } \\
y=\alpha_{0}+\alpha_{1} t+\varepsilon \\
\text { gradient }
\end{gathered}
$$

 straight-
line grout line grain
each unit
Level 2

$$
\alpha_{0}=\gamma_{00}+u_{0}
$$

Combined (estimation)

$$
\alpha_{1}=\gamma_{10}+u_{1}
$$

model

$$
y=\gamma_{00}+\gamma_{10} t+\left[\varepsilon+40+u_{1}\right]
$$

fixed
B. Conditional Model exoguar z, w systematic indio
Lend $1 \quad y=\alpha_{0}+\alpha_{1} t+\underset{\varepsilon}{d}$
Level 2

$$
\begin{aligned}
& \alpha_{0}=\gamma_{00}+\gamma_{01} z+u_{0} \\
& \alpha_{1}=\gamma_{10}+\gamma_{11} z+u_{1}
\end{aligned}
$$

Combined $\quad y=\gamma_{00}+\gamma_{01} z+\gamma_{10} t+\gamma_{11} z \cdot t$

$$
+\left[\varepsilon+u_{0}+u_{1}\right]
$$

model form $y \sim z * t$ redundant time In
red

Two-Stage Analysis - "NIH Method"

One classic approach to the analysis of such data is known as two-stage or two-step analysis.

It is sometimes called the "NIH Method" because it was popularized by statisticians working at NIH.

In the two-stage method, we simply fit a straight line (or curve) to the response data for each subject (first stage), and then regress the estimates of the individual intercepts and slopes on subject-specific covariates (second stage).

One of the attractions of this method is that it is very easy to perform using existing statistical software for linear regression.

We can illustrate the method by considering a two-stage analysis of Feldman's clearance data.

Gelman secret weapon; Diggle clever ostrich, SFYS 263

Section 1- Descriptive analyses of growth rates.

Individual OLS Fits

The most basic step in the analysis is the fitting of a straight-line growth curve (the regression of Y on t for each p) by ordinary leastsquares.
Individual OLS Fits displays for each individual (rows) the (columns):
ID
RATE (empirical rate; OLS estimate of θ_{p}, slope Y on t fit)
INIT_LVL (level for Y on t fit evaluated at the first anchor time point)
MSR (residual variance for Y on t fit)
RSQ (squared multiple correlation for Y on t fit)
W (value of exogenous variable)
Cross-sectional Description:
For synchronous (same times of observation for each individual) data sets (in which it makes sense to talk about time-1 etc observations) cross-sectional descriptive summaries are provided.
(In data sets such as smearmiss, this output is automatically not computed).
Cross-sectional means and between-wave correlations for the $\mathrm{Y}\left(t_{i}\right)$ (adding $\hat{\theta}$ and W)

OLS Fits: Descriptive Statistics

Estimation of the straight-line growth model allows comparisons of rates of change across individuals. Stem-and-leaf diagrams, boxplots, and the five-number summaries of the empirical rates are useful ways to describe both typical rates of learning and the heterogeneity across individuals. Displayed in this section are descriptive statistics for the quantities listed under Individual OLS Fits (RATE INIT_LVL MSR RSQ W) plus individual values for the Foulkes-Davis tracking index (Gamma). (Foulkes-Davis index of tracking estimated from a count of the number of intersections that each individual trajectory has with the other individuals; for each individual $\hat{\gamma}_{p}$ is one minus the number of intersections over $n-1$. Individuals with a low value of $\hat{\gamma}_{p}$ are those whose relative standing changes considerably over the time period.)

Stem-and-leaf diagrams and accompanying boxplots are displayed for RATE (Empirical rate) INIT_LVL (Fitted Initial Level) W (Exogenous Variable).

OLS Fitted Values for Anchor Times

Regardless of whether the Cross-sectional Description for (synchronous data) is printed above, descriptive (cross-sectional) statistics and between-wave correlations are provided for the following measures: TA_FITi values of the individual fits for each of the specified anchor time points, plus RATE W

> Rate and Fitted Initial Level Scatter plot of RATE vs INIT_LVL To provide some descriptive augmentation to the parameter estimate for the correlation $\rho_{\eta\left(t_{T}\right) \theta}$ (correlation between change θ_{p} and true initial status $\eta_{p}\left(t_{I}\right)$, where t_{I} indicates a time of initial status designated by the first time anchor point).

OLS Theta-hat on W Regression When W is present, OLS regression and corresponding scatterplot is given-provides graphical diagnostic and shows correspondence (both point estimate and standard error) with fixed-effects estimates from mixed-model estimation (exact match for complete synchronous data)

OLS Fitted Initial Level on W Regression When W is present, OLS regression is given-provides graphical diagnostic and shows correspondence (both point estimate and standard error) with fixedeffects estimates from mixed-model estimation (exact match for complete synchronous data)

Chapter 4 Models for Longitudinal Data

Longitudinal data consist of repeated measurements on the same subject (or some other "experimental unit") taken over time. Generally we wish to characterize the time trends within subjects and between subjects. The data will always include the response, the time covariate and the indicator of the subject on which the measurement has been made. If other covariates are recorded, say whether the subject is in the treatment group or the control group, we may wish to relate the within- and between-subject trends to such covariates.

In this chapter we introduce graphical and statistical techniques for the analysis of longitudinal data by applying them to a simple example.

4.1 The sleepstudy Data

Belenky et al. [2003] report on a study of the effects of sleep deprivation on reaction time for a number of subjects chosen from a population of longdistance truck drivers. These subjects were divided into groups that were allowed only a limited amount of sleep each night. We consider here the group of 18 subjects who were restricted to three hours of sleep per night for the first ten days of the trial. Each subject's reaction time was measured several times on each day of the trial.

```
> str(sleepstudy)
'data.frame': 180 obs. of 3 variables:
    $ Reaction: num 250 259 251 321 357 ...
    $ Days : num 01 2 3 4 5 6 7 8 9 ...
    $ Subject : Factor w/ 18 levels "308","309","310",..: 1 1 1 1 1 1 1 1 1..
```

In this data frame, the response variable Reaction, is the average of the reaction time measurements on a given subject for a given day. The two covariates are Days, the number of days of sleep deprivation, and Subject, the identifier of the subject on which the observation was made.
or opportunity for sleep except as required by the periodic sleep latency tests (described below).

Test instruments and measures

Psychomotor vigilance test

The PVT measures simple reaction time to a visual stimulus, presented approximately 10 times/minute (interstimulus interval varied from 2 to 10 s in 2-s increments) for 10 min and implemented in a thumb-operated, hand-held device (Dinges and Powell 1985). Subjects attended to the LED timer display on the device and pressed the response button with the preferred thumb as quickly as possible after the appearance of the visual stimulus. The visual stimulus was the LED timer turning on and incrementing from 0 at $1-\mathrm{ms}$ intervals. In response to the subject's button press, the LED timer display stopped incrementing and displayed the subject's response latency for 0.5 s , providing trial-by-trial performance feedback. At the end of this 0.5 -s interval the display turned off for the remainder of the foreperiod preceding the next stimulus. Foreperiods varied randomly from 2 to 10 s . Dependent measures, averaged or summed across the $10-\mathrm{min}$ PVT session, included mean speed (reciprocal of average response latency), number of lapses (lapse $=$ response latency exceeding 500 ms), and mean speed for the fastest 10% of all responses.

Polysomnography

Polysomnographic (PSG) measures [EEG (C3 and C4); EOG (outer canthi of each eye), EMG (mental/submental)], and EKG (from just below left and right clavicle) were recorded continuously throughout the study using Medilog 9000-II magnetic cassette recorders (Oxford Instruments, Largo, FL, USA). Raw data were digitized, and both night-time sleep and sleep latency tests (described below) were scored in accordance with Rechtschaffen and Kales (1968) criteria using Eclipse software (Stellate Systems, Westmont, Quebec, Canada).

Night-time sleep

Six technicians, whose inter-rater reliabilities were at least 85% compared with the scoring of a diplomate of the American Board of Sleep Medicine (TJB), scored night-time sleep periods (defined as lights out to lights on). Dependent measures included minutes of individual sleep stages [1, 2, slow wave sleep (SWS) and REM] and minutes of total sleep time (TST) (sum of minutes spent in all sleep stages).

Sleep latency test

Subjects were placed in bed in a quiet, darkened room and instructed to close their eyes and not resist the urge to fall asleep. Staff monitored PSG signals from outside of the bedroom using Oxford Mentor systems. To decrease the likelihood of premature test termination during ambiguous
stage 1 , the sleep latency test (SLT) was terminated immediately after the onset of stage 2 sleep (or after 20 min without sleep onset) by a staff member opening the bedroom door, turning on the lights, and announcing that the test was over. As stage 1 sleep does not appear to confer recuperative benefit in otherwise normal, healthy adults (Wesensten et al. 1999), the potential accumulation of up to 40 min stage 1 sleep daily (20 min per SLT $\times 2$ SLTs per day) was not expected to affect performance. SLT schedules were staggered by 25 min for subject roommates, so that each could be tested in the bedrooms individually. For purposes of analyses, sleep latency was re-scored off-line from lights out to the first 30 s of stage 1 sleep.

Subjective alertness/sleepiness

The Stanford Sleepiness Scale (SSS; Hoddes et al. 1973) assessed subjective sleepiness on a single-item scale ranging from 1 ('feeling active and vital; alert; wide awake') to 7 ('almost in reverie; sleep onset soon; losing struggle to remain awake'). The dependent measure was the subject's sleepiness rating.

Procedure

Subjects reported to the Division of Neuropsychiatry, Walter Reed Army Institute of Research at 10:00 h on the day prior to T1. After being provided with verbal and written descriptions of study procedures and rules, subjects were individually informed of the sleep schedule to which their group (of two to four subjects) was being assigned and electrodes for ambulatory PSG (Oxford Medilog 9200-II), including EOG, EMG, C3, C4, O1, O2, and EKG were applied. Subjects then underwent training on the various performance tasks. At 18:00 h, they were transported to the Johns Hopkins Bayview General Clinical Research Center (GCRC, Baltimore, MD, USA) where they resided until the end of the study. Throughout the study, meals were served at 08:30, 12:30, and 17:30 h, with snacks and beverages available ad libitum between performance tests. Vital signs (blood pressure, pulse, and tympanic temperature) were recorded periodically for purposes of checking general health status. Subjects did not use/consume nicotine or caffeine-containing products during the study; random urine drug screens verified compliance. Use of medications during the study (e.g. acetaminophen for headache) was allowed at the discretion of the attending physician. For all women enrolled in the study, serum pregnancy tests performed at the beginning of the study were negative.

Same-sex subject pairs were assigned to share 2-person hospital-style bedrooms. T1 and T2 were devoted to training on the performance tests and familiarization with study procedures. Baseline testing commenced on the morning of the third day (B) and testing continued for the duration of the study (E1-E7, R1-R3). On the morning of R4 electrodes were removed shortly after awakening, and subjects were debriefed and released from the study. No testing occurred on R4.

Sleep deprivation data

- This laboratory experiment measured the effect of sleep deprivation on cognitive performance.
- There were 18 subjects, chosen from the population of interest (long-distance truck drivers), in the 10 day trial. These subjects were restricted to 3 hours sleep per night during the trial.
- On each day of the trial each subject's reaction time was measured. The reaction time shown here is the average of several measurements.
- These data are balanced in that each subject is measured the same number of times and on the same occasions.

Fig. 4.1 A lattice plot of the average reaction time versus number of days of sleep deprivation by subject for the sleepstudy data. Each subject's data are shown in a separate panel, along with a simple linear regression line fit to the data in that panel. The panels are ordered, from left to right along rows starting at the bottom row, by increasing intercept of these per-subject linear regression lines. The subject number is given in the strip above the panel.

As recommended for any statistical analysis, we begin by plotting the data. The most important relationship to plot for longitudinal data on multiple subjects is the trend of the response over time by subject, as shown in Fig. 4.1. This plot, in which the data for different subjects are shown in separate panels with the axes held constant for all the panels, allows for examination of the time-trends within subjects and for comparison of these patterns between

Assessing the linear fits

- In most cases a simple linear regression provides an adequate fit to the within-subject data.
- Patterns for some subjects (e.g. 350, 352 and 371) deviate from linearity but the deviations are neither widespread nor consistent in form.
- There is considerable variation in the intercept (estimated reaction time without sleep deprivation) across subjects - 200 ms . up to 300 ms. - and in the slope (increase in reaction time per day of sleep deprivation) - 0 ms ./day up to 20 ms ./day.
- We can examine this variation further by plotting confidence intervals for these intercepts and slopes. Because we use a pooled variance estimate and have balanced data, the intervals have identical widths.
- We again order the subjects by increasing intercept so we can check for relationships between slopes and intercepts.

```
Individual Plots
```

```
> xyplot(Reaction ~ Days | Subject, sleepstudy, type = c("g","p","r"),
+ index = function(x,y) coef(lm(y ~ x))[1],
+ xlab = "Days of sleep deprivation",
+ ylab = "Average reaction time (ms)", aspect = "xy")
> xyplot(Reaction ~ Days | Subject, sleepstudy, type = c("g","b"),
+ index = function(x,y) coef(lm(y ~ x))[1],
+ xlab = "Days of sleep deprivation",
+ ylab = "Average reaction time (ms)", aspect = "xy")
```


my connect-the-dots-version

4.1.1 Characteristics of the sleepstudy Data Plot

The principles of "Trellis graphics", developed by Bill Cleveland and his coworkers at Bell Labs and implemented in the lattice package for R by Deepayan Sarkar, have been incorporated in this plot. As stated above, all the panels have the same vertical and horizontal scales, allowing us to evaluate the pattern over time for each subject and also to compare patterns between subjects. The line drawn in each panel is a simple least squares line fit to the data in that panel only. It is provided to enhance our ability to discern patterns in both the slope (the typical change in reaction time per day of sleep deprivation for that particular subject) and the intercept (the average response time for the subject when on their usual sleep pattern).

The aspect ratio of the panels (ratio of the height to the width) has been chosen, according to an algorithm described in Cleveland [1993], to facilitate comparison of slopes. The effect of choosing the aspect ratio in this way is to have the slopes of the lines on the page distributed around $\pm 45^{\circ}$, thereby making it easier to detect systematic changes in slopes.

The panels have been ordered (from left to right starting at the bottom row) by increasing intercept. Because the subject identifiers, shown in the strip above each panel, are unrelated to the response it would not be helpful to use the default ordering of the panels, which is by increasing subject number. If we did so our perception of patterns in the data would be confused by the, essentially random, ordering of the panels. Instead we use a characteristic of the data to determine the ordering of the panels, thereby enhancing our ability to compare across panels. For example, a question of interest to the experimenters is whether a subject's rate of change in reaction time is related to the subject's initial reaction time. If this were the case we would expect that the slopes would show an increasing trend (or, less likely, a decreasing trend) in the left to right, bottom to top ordering.

There is little evidence in Fig. 4.1 of such a systematic relationship between the subject's initial reaction time and their rate of change in reaction time per day of sleep deprivation. We do see that for each subject, except 335, reaction time increases, more-or-less linearly, with days of sleep deprivation. However, there is considerable variation both in the initial reaction time and in the daily rate of increase in reaction time. We can also see that these data are balanced, both with respect to the number of observations on each subject, and with respect to the times at which these observations were taken. This can be confirmed by cross-tabulating Subject and Days.

```
> xtabs(~ Subject + Days, sleepstudy)
            Days
Subject 0 1 2 3 4 5 6 7 8 9
    308 11 1 1 1 1 1 1 1 1 1 1 1 1
    309 11 1 1 1 1 1 1 1 1 1 1
    310
```


R version 3.4.4 (2018-03-15) -- "Someone to Lean On"
Copyright (C) 2018 The R Foundation for Statistical Computing
> library(lme4)
Loading required package: Matrix
\#\#\# Sleepstudy descriptives SFYS
> data(sleepstudy) \# sleep deprivation 3hrs/night truckers
> dim(sleepstudy)
[1] 1803
> head(sleepstudy)
Reaction Days Subject
$1249.5600<008$
2258.704711308
$3250.8006 \quad 2 \quad 308$
4321.4398308
$5356.8519 \quad 4 \quad 308$
6414.6901508
\#\# note initial observation time $=0$
> attach(sleepstudy)
> table(Subject)
Subject

308	309	310	330	331	332	333	334	335	337	349	350	351	352	369	370	371	372
10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10

> \#yes 18 subjects (3hrs sleep) 10 observations on each, page 64 of bates ch4
> \#lmList has the old nlme syntax, even in lme4
> sleeplmList $=$ lmList(Reaction \sim Days |Subject, data = sleepstudy)
> sleeplmList
Call: lmList(formula = Reaction ~ Days | Subject, data = sleepstudy)
Coefficients:
(Intercept) Days
308244.192721 .764702
309205.05492 .261785
$310 \quad 203.4842 \quad 6.114899$
$330 \quad 289.6851 \quad 3.008073$
$331 \quad 285.7390 \quad 5.266019$
$332 \quad 264.2516 \quad 9.566768$
333 275.0191 9.142045
$334 \quad 240.162912 .253141$
335 263.0347-2.881034
337 290.1041 19.025974
$349 \quad 215.111813 .493933$
$350 \quad 225.834619 .504017$
$351 \quad 261.1470 \quad 6.433498$
$352 \quad 276.372113 .566549$
$369 \quad 254.968111 .348109$
$370 \quad 210.449118 .056151$
$371 \quad 253.6360 \quad 9.188445$
$372 \quad 267.044811 .298073$

Degrees of freedom: 180 total; 144 residual
Residual standard error: 25.59182
> \# note this matches lmer Residual (random eff)
> mean(coef(sleeplmList)[,1])
[1] 251.4051
> mean(coef(sleeplmList)[,2])
[1] 10.46729
> \#mean int and slope match lmer Fixed effects results
> \#\#\#\# Random -> varies over units (subj); Fixed -> not vary

```
> # heterogeneity across units
> var(coef(sleeplmList)[,1])
[1] 838.3423
> var(coef(sleeplmList)[,2])
```

[1] 43.01034
> \#these are too big as they should be, compare with variance random effects
$>$ \# mle subtracts off wobble in estimated indiv regressions Y on t
> \# method of moments - SSR/SST, see Review Question
$>$
> \#\# more useful descriptives using lmList results
> quantile(coef(sleeplmList)[,1])
0\% 25\% 50\% 75\% 100\%
203.4842229 .4167258 .0576273 .0255290 .1041
$>$
> quantile(coef(sleeplmList)[,2])
0\% 25\% 50\% 75\% 100\%
-2.881034 6.194548 10.432421 13.548395 21.764702
$>$
> stem(coef(sleeplmList)[,2])
The decimal point is 1 digit(s) to the right of the \mid

-0	3
0	23
0	56699
1	011234
1	89
2	02

> \#\# can also rename quantities
$>$ rate $=$ coef(sleeplmList) $[, 2]$
> quantile(rate)
0\% 25\% 50\% 75\% 100\%
-2.881034 6.194548 10.432421 13.548395 21.764702
>

```
    STHT 22Z
    R version 2.10.1 (2009-12-14)
> library(lme4) # the "new" random effects (vs nlme) see Bates book 2010 dctcasocuvcerm
Loading required package: Matrix Loading required package: lattice
> data(sleepstudy) # sleep deprivation 3hrs/night truckers
> dim(sleepstudy) [1] 180 3
> head(sleepstudy)
    Reaction Days Subject
```



```
3 250.8006 
4 321.4398
5
> attach(sleepstudy) > table(Subject) #"balanced data"
Subject
```



```
10 obs,18 subjects
> #yes 18 subjects (3hrs sleep) 10 observations on each, page 64 of bates ch4
#lmList has the old nlme syntax, even in lme4 #Start "Smart First Year Student" description S FYS
> sleeplmList = lmList(Reaction ~ Days |Subject, data = sleepstudy)
> sleeplmList Call: lmList(formula = Reaction ~ Days | Subject, data = sleepstudy)
Coefficients:
    (Intercept) Days
308 244.1927 21.764702
309 205.0549 2.261785
310 203.4842 6.114899
330 289.6851 3.008073
331 285.7390 5.266019
332 264.2516 9.566768
333 275.0191 9.142045
334 240.1629 12.253141
335 263.0347 -2.881034
337 290.1041 19.025974
349 215.1118 13.493933
350 225.8346 19.504017
350}rrrrra\mp@code{225.8346 19.504017
352 276.3721 13.566549
369 254.9681 11.348109
370 210.4491 18.056151
371 253.6360 9.188445
372 267.0448 11.298073
Degrees of freedom: }180\mathrm{ total; }144\mathrm{ residual
Residual standard error: 25.59182 # note this matches Bates lmer Residual (random eff)
> mean(coef(sleeplmList)[,1]) [1] 251.4051
> mean(coef(sleeplmList)[,2]) [1] 0.46729
> #mean int and slope match lmer Fixedeffects results p. }6
> var(coef(sleeplmList)[,1]) [1] 838.3423
> var(coef(sleeplmList)[,2]) [1] 43.01034
> #these are too big as they should be, compare with variance, random effects p. }6
> # mle subtracts off wobble in estimated indiv regressions Y on t
> # - SSR/SST
> quantile(coef(sleeplmList)[,1])
```



```
203.4842 229.4167 258.0576 273.0255 290.1041
> quantile(coef(sleeplmList)[,2])
-2.881034 6.194548 10.432421 13.548395 21.76470% (100% rater
> stem(coef(sleeplmList)[,2])
The decimal point is 1 digit(s) to the right of the |
-0
l:l
011234
```


Stat222 Week2

R version 3.4.4 (2018-03-15) -- "Someone to Lean On"
> \# series of (redundent) lmer analyses for expository
> \# first 2 do REML, second pair match Bates p.67 in doing MLE (REML FALSE)
> \# refer to unconditional model "A" in handout
> \#\# note dataframe has initial time = 0;
that's assumed in the "intercept" setting in lmer
> sleeplmer = lmer(Reaction ~ Days + (1 + Days|Subject), sleepstudy)
> summary(sleeplmer)
Linear mixed model fit by REML ['lmerMod']
Formula: Reaction ~ Days + (1 + Days | Subject)
Data: sleepstudy
REML criterion at convergence: 1743.6
Scaled residuals:
Min 1Q Median 3Q Max
-3.9536 -0.4634 0.0231 0.4634 5.1793

Random effects:				
Groups	Name	Variance	Std.Dev. Corr	
Subject	(Intercept)	612.09	24.740	
	Days	35.07	5.922	0.07
Residual	654.94	25.592		
Number of obs: 180, groups:	Subject,	18		

Fixed effects:

	Estimate	Std. Error t value	
(Intercept)	251.405	6.825	36.838
Days	10.467	1.546	6.771

Correlation of Fixed Effects:
(Intr)
Days -0.138
> \#\# also note Corr .07 from random effects vs Corr -. 138 from fixed effects
see RQ
> cor(coef(sleeplmList)[,1],coef(sleeplmList)[,2])
[1] -0.1375534
> confint(sleeplmer) \# best inference tool, see RQ for bootstrap version
Computing profile confidence intervals ...
2.5 % 97.5 %
.sig01 14.3815822 37.715996
.sig02 -0.4815007 0.684986
.sig03 3.8011641 8.753383
.sigma 22.8982669 28.857997
(Intercept) 237.6806955 265.129515
Days 7.3586533 13.575919

```
```

> confint(sleeplmer, oldNames = FALSE) \# to get good labels

```
Computing profile confidence intervals ...
                                    \(2.5 \% \quad 97.5 \%\)
sd_(Intercept)|Subject \(14.3815822 \quad 37.715996\)
cor_Days.(Intercept)|Subject -0.48150070 .684986
sd_Days|Subject
3.80116418 .753383
sigma
22.898266928 .857997
(Intercept) 237.6806955265 .129515
Days \(\quad 7.358653313 .575919\)
\# useful residual plots in RQ, week 3 \#\#\#\#\#\#\#\#\# end of analysis \#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\# \#For comparison
```

> sleeplmer2 = lmer(Reaction ~ 1 + Days + (1 + Days|Subject), sleepstudy)

```
> summary(sleeplmer2)
Linear mixed model fit by REML ['lmerMod']
Formula: Reaction \(\sim 1+\) Days + (1 + Days | Subject)
    Data: sleepstudy
REML criterion at convergence: 1743.6

Scaled residuals:
Min 1Q Median 3Q Max
-3.9536-0.4634 \(0.0231 \quad 0.4634 \quad 5.1793\)
\begin{tabular}{lllll} 
Random effects: & & & \\
Groups & Name & Variance & Std.Dev. Corr \\
Subject & (Intercept) & 612.09 & 24.740 & \\
& Days & 35.07 & 5.922 & 0.07 \\
& & 654.94 & 25.592 & \\
Residual & & &
\end{tabular}

Fixed effects:
\begin{tabular}{rrr}
251.405 & 6.825 & 36.838 \\
10.467 & 1.546 & 6.771
\end{tabular}

Correlation of Fixed Effects:
(Intr)
Days -0.138
\#\#\# Maximum liklelihood instead of REML
> sleeplmer3 = lmer(Reaction ~ 1 + Days + (1 + Days|Subject), sleepstudy, REML = FALSE)
> summary(sleeplmer3)
Linear mixed model fit by maximum likelihood ['lmerMod']
Formula: Reaction ~ 1 + Days + (1 + Days | Subject)
Data: sleepstudy

AIC BIC logLik deviance df.resid
\[
1763.9 \quad 1783.1 \quad-876.0 \quad 1751.9
\]

Scaled residuals:
Min 1Q Median 3Q Max
-3.9416 -0.4656 \(0.02890 .4636 \quad 5.1793\)

Random effects:
Groups Name Variance Std.Dev. Corr

Subject (Intercept) \(565.52 \quad 23.781\)
Days \(\quad 32.68 \quad 5.717 \quad 0.08\)

Residual 654.9425 .592
Number of obs: 180, groups: Subject, 18
Fixed effects:
Estimate Std. Error t value
(Intercept) \(251.405 \quad 6.63237 .906\)
Days \(10.467 \quad 1.5026 .968\)
Correlation of Fixed Effects:
(Intr)
Days -0.138
```

> sleeplmer4 = lmer(Reaction ~ Days + (1 + Days|Subject),

```
    sleepstudy, REML = FALSE)
> summary(sleeplmer4)
Linear mixed model fit by maximum likelihood ['lmerMod']
Formula: Reaction ~ Days + (1 + Days | Subject)
    Data: sleepstudy

AIC BIC logLik deviance df.resid 1763.91783 .1 -876.0 1751.9174

Scaled residuals:
Min 1Q Median 3Q Max
-3.9416 -0.4656 \(0.02890 .4636 \quad 5.1793\)

Random effects:
Groups Name Variance Std.Dev. Corr
Subject (Intercept) 565.5223 .781
Days \(\quad 32.68 \quad 5.717 \quad 0.08\)
Residual \(654.94 \quad 25.592\)
Number of obs: 180, groups: Subject, 18
Fixed effects:
Estimate Std. Error t value
(Intercept) \(251.405 \quad 6.63237 .906\)
Days \(10.467 \quad 1.5026 .968\)
Correlation of Fixed Effects:
(Intr)

Days -0.138
>

confint in revQ\#1
Days -0.138
\(>\operatorname{cor}(\operatorname{coef}(\) sleeplmList)[,1],coef(sleeplmList)[,2]) [1] -0.1375534

\section*{ Linear mixed model fit by REML \\ \begin{tabular}{llll} 
Formula: Reaction \(-1+\) Days \(+(1+\) Days \(\mid\) Subject) \\
AIC BIC logLik deviance REMLdev & & \\
1756 1775 -871.8 & 1752 & 1744 \\
Random effects: & & \\
Groups Name & Variance Std. Dev. Corr & \\
Subject (Intercept) & 612.092 & 24.7405 & \\
& 35.072 & 5.9221 & 0.066
\end{tabular} \\ Number of obs: 180, groups: Subject, 18 \\ Fixed effects: \\ \begin{tabular}{lrrr} 
& Estimate Std. Error & t value \\
(Intercept) & 251.405 & 6.825 & 36.84 \\
Days & 10.467 & 1.546 & 6.77
\end{tabular} \\ Correlation of Fixed Effects: \\ (Intr) \\ Laird-ware do REML}

Days -0.138
\(>\) sleeplmer3 \(=1\) mer (Reaction \(\sim 1+\) Days \(+(1+\) Days \(\mid\) Subject \()\), sleepstudy, REML = FALSE \()\)
> summary(sleeplmer3) \#mle results a little different than REML, as it should Linear mixed model fit by maximum likelihood

Estimate Std. Error t value
Days \(10.467 \quad 1.502 \quad 6.97\)
Correlation of Fixed Effects:
(Intr)
Dáys -0.138
\(>\) sleeplmer4 \(=\) lmer (Reaction \(\sim\) Days \(+(1+\) Days|Subject \()\), sleepstudy, REML \(=\) FALSE \()\)
> summary(sleeplmer4)
Linear mixed model fit by maximum likelihood
Formula: Reaction \(\sim\) Days \(+(1+\) Days | Subject \()\) Data: sleepstudy
AIC BIC logLik deviance REMLdev
\(\begin{array}{lllll}1764 & 1783 & -876 & 1752\end{array}\)
Random effects:
\begin{tabular}{llcrl} 
Groups & Name & Variance & Std.Dev. Corr \\
Subject & (Intercept) & 565.518 & 23.7806 & \\
& Days & 32.682 & 5.7168 & 0.081 \\
Residual & & 654.941 & 25.5918 &
\end{tabular}
Number of obs: 180, groups: Subject, 18
Fixed effects:
Estimate Std. Error \(t\) value
\(\begin{array}{llll}\text { (Intercept) } & 251.405 & 6.632 & 37.91\end{array}\)
\(\begin{array}{llll}\text { Days } & 10.467 & 1.502 \quad 6.97\end{array}\)
Correlation of Fixed Effects:
(Intr)
Days -0.138

\section*{Review Question \#1}

R version 3.0.3 (2014-03-06) -- "Warm Puppy"
Copyright (C) 2014 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)
> library(lme4)
Loading required package: lattice
Loading required package: Matrix
> data(sleepstudy)
> ?data
starting httpd help server ... done
> try(data(package = "lme4")) \# to list datasets in lme4
> ?sleepstudy
> sleeplmer \(=\) lmer (Reaction \(\sim\) Days \(+(1+\) Days|Subject \()\), sleepstudy \()\)
> summary(sleeplmer) \# as we did in class exs
Linear mixed model fit by REML ['lmerMod']
Formula: Reaction \(\sim\) Days + (1 + Days | Subject)
Data: sleepstudy
REML criterion at convergence: 1743.628
\begin{tabular}{lllll} 
Random effects: & & & \\
Groups & Name & Variance & Std.Dev. Corr \\
Subject & (Intercept) & 612.10 & 24.741 & \\
& Days & 35.07 & 5.922 & 0.07 \\
& 654.94 & 25.592 & \\
Residual & & 64, & \\
Number of obs: 180, groups: Subject, &
\end{tabular}

Number of obs: 180, groups: Subject, 18
\begin{tabular}{lrrr} 
Fixed effects: \\
& Estimate & Std. Error \(t\) value \\
(Intercept) & 251.405 & 6.825 & 36.84 \\
Days & 10.467 & 1.546 & 6.77
\end{tabular}

Correlation of Fixed Effects:
(Intr)
Days -0.138
> confint(sleeplmer) \# basic set of 95\% CI (profile method)
Computing profile confidence intervals ...
\begin{tabular}{lrrll} 
& \(2.5 \%\) & \(97.5 \%\) & & \\
.sig01 & 14.3815734 & 37.715996 & \# parameter sqrt(variance component for intercept parameter) i.e sqrt(Var(alpha_0) \\
.sige2 & -0.4815007 & 0.684986 & \# parameter Cor(alpha_0, alpha_1), rather wide \\
.sige3 & 3.8011641 & 8.753383 & \# parameter sqrt(variance component for rate (slope) parameter) i.e sqrt(Var(alpha_1) \\
.sigma & 22.8982669 & 28.857997 & \# parameter sqrt(residual variance individual regressions) i.e. sqrt(Var(epsilon) \\
(Intercept) & 237.6806955 & 265.129515 & \# parameter fixed effect gamma_00, i.e. mean(alpha_0) \\
Days & 7.3586533 & 13.575919 & \# parameter fixed effect gamma_10, i.e. mean(alpha_1)
\end{tabular}
> confint(sleeplmer, level = .99) \# try higher confidence level, wider intervals
Computing profile confidence intervals ...
\begin{tabular}{lrr} 
& \(0.5 \%\) & \(99.5 \%\) \\
.sig01 & 11.697852 & 43.9249121 \\
.sig02 & -0.611183 & 0.8620229 \\
.sig03 & 3.313161 & 10.1306220 \\
.sigma & 22.149064 & 30.0282535 \\
(Intercept) & 232.619539 & 270.1906680 \\
Days & 6.212281 & 14.7222899
\end{tabular}
 Computing bootstrap confidence intervals ...
\begin{tabular}{lrr} 
& \(2.5 \%\) & \(97.5 \%\) \\
sd_(Intercept)|Subject & 13.0598528 & 35.1257317 \\
cor_Days.(Intercept)|Subject & -0.5137308 & 0.9294877 \\
sd_Days|Subject & 3.6573704 & 8.3907217 \\
sigma & 22.8591370 & 28.4592246 \\
(Intercept) & 239.0486723 & 265.1112312 \\
Days & 7.1933705 & 13.6621452
\end{tabular}

Warning messages:
1: In cov2cor(m)
diag(.) had 0 or NA entries; non-finite result is doubtful
2: In bootMer (object, bootFun, nsim = nsim, ...) :
some bootstrap runs failed \((1 / 1000)\)

\begin{tabular}{lrr} 
Computing bootstrap confidence intervals & \(\ldots\). \\
& \(2.5 \%\) & \(97.5 \%\) \\
sd_(Intercept)|Subject & 12.5289697 & 35.3488520 \\
cor_Days.(Intercept)|Subject & -0.4756043 & 0.9096473 \\
sd_Days|Subject & 3.2938939 & 8.3535371 \\
sigma & 22.6564232 & 28.4105186 \\
(Intercept) & 237.3140641 & 265.0539370 \\
Days & 7.5707244 & 13.7008761
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{\multirow[t]{3}{*}{\begin{tabular}{l}
> confint(sleeplmer, method = "boot", nsim = 3000, Computing bootstrap confidence intervals ... \\
2.5 \% 97.5 \%
\end{tabular}}} \\
\hline & & \\
\hline & & \\
\hline & & sd_(Intercept)|Subject 12.6096568 35.420349 \\
\hline & & cor_Days.(Intercept)|Subject -0.5146076 0.961081 \\
\hline & & sd_Days|Subject 3.3717408 8.364048 \\
\hline & & sigma 22.635390528 .474294 \\
\hline & & (Intercept) 238.1725151264 .494443 \\
\hline & & Days \(\quad 7.479432413 .426824\) \\
\hline \multicolumn{3}{|l|}{\# bootstrap can take a couple minutes on your machines} \\
\hline \multicolumn{3}{|l|}{\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#} \\
\hline \multicolumn{3}{|l|}{Now to p-values, just because I promised.} \\
\hline \multicolumn{3}{|l|}{I don't have much concern about the abscence of p-values in lme4} \\
\hline & & See the p-values section of lme4 (p.77) \\
\hline
\end{tabular}

We try the mixed function from package afex (among those discussed in lme4 manual)
```

> install.packages("afex")
(as 'lib' is unspecified)
see 2020 update for RQ1; afex is easier and
better output if you want it

```

The downloaded binary packages are in

> library (afex)
Loading required package: car
Loading required package: reshape2
Welcome to afex. Important notes:
Due to popular demand, afex doesn't change the contrasts globally anymore.
To set contrasts globally to contr. sum run set_sum_contrasts().
To set contrasts globally to the default (treatment) contrasts run set_default_contrasts().
All afex functions are unaffected by global contrasts and use contr.sum as long as check.contr = TRUE (which is the default).
\(>\) ?mixed
> \#Obtain p-values for a mixed-model from lmer().
> mixed(Reaction ~ Days \(+(1+\) Days|Subject), sleepstudy)
Contrasts set to contr. sum for the following variables: Subject
Numerical variables NOT centered on 0 (i.e., interpretation of all main effects might be difficult if in interactions) Days
Fitting 2 (g)lmer() models:
[..]
[Note: method with signature 'sparseMatrix\#ANY' chosen for function 'kronecker',
target signature 'dgCMatrix\#ngCMatrix'.
"ANY\#sparseMatrix" would also be valid
.]
Effect \(F\) ndf ddf F.scaling p.value
1 Days \(45.85117 .00 \quad 1.00<.0001\) \# it's good mixed only gives you the p-value is small rather than some rediculous e^-10
> mixed(Reaction \(\sim 1+\) Days \(+(1+\) Days|Subject), sleepstudy) \# no diff in way maodel is specified
Contrasts set to contr.sum for the following variables: Subject
Numerical variables NOT centered on 0 (i.e., interpretation of all main effects might be difficult if in interactions) : Days
Fitting 2 (g)lmer() models:
[..]
Obtaining 1 p -values:
[.]
[.] Effect F ndf ddf F.scaling p.value
1 Days \(45.85 \quad 117.00 \quad 1.00<.0001\)
1
\(>\)
\(>\) sqrt(45.85)
[1] 6.771263

\section*{Fitting the model}
```

> (fm1 <- lmer(Reaction ~ Days + (Days|Subject), sleepstudy))
Linear mixed model fit by REML ['merMod']
Formula: Reaction ~ Days + (Days | Subject)
Data: sleepstudy
REML criterion at convergence: 1743.628
Random effects:

Groups	Name	Variance	Std.Dev. Corr	
Subject	(Intercept)	612.09	24.740	
	Days	35.07	5.922	0.066

 Residual
 654.94 25.592
Number of obs: 180, groups: Subject, 18
Fixed effects:
Estimate Std. Error t value
(Intercept) 251.405 6.825 36.84
Days 10.467 1.546 6.77
Correlation of Fixed Effects:
(Intr)
Days -0.138

```
>(fm8 <- lmer(Reaction ~ 1 + Days + (1 + Days|Subject), sleepstudy,
+ REML = 0))
```

Linear mixed model fit by maximum likelihood
Formula: Reaction ~ 1 + Days + (1 + Days | Subject)
Data: sleepstudy
AIC BIC logLik deviance
$17641783-876 \quad 1752$
Random effects:

Groups	Name	Variance	Std.Dev. Corr		
Subject	(Intercept)	565.516	23.7806		2×2 cov matrix of random effects
	Days	32.682	5.7168	0.081	
		654.941	25.5918		
Residual					

| Fixed effects: | | | |
| :--- | ---: | ---: | ---: | ---: |
| | Estimate | Std. Error t value | |
| (Intercept) | 251.405 | 6.632 | 37.91 |
| Days | 10.467 | 1.502 | 6.97 |

```
Correlation of Fixed Effects:
    (Intr)
Days -0.138
```

From the display we see that this model incorporates both an intercept and a slope (with respect to Days) in the fixed effects and in the random effects. Extracting the conditional modes of the random effects

```
head(ranef(fm8)[["Subject"]])
```

```
    (Intercept) Days
308 2.815683 9.0755340
309 -40.048490 -8.6440671
310-38.433156 -5.5133785
330 22.832297 -4.6587506
331 21.549991 -2.9445203
332 8.815587 -0.2352093
```

confirms that these are vector-valued random effects. There are a total of $q=36$ random effects, two for each of the 18 subjects.

The random effects section of the model display,

Groups	Name	Variance	Std.Dev. Corr	
Subject	(Intercept)	565.516	23.7806	
	Days	32.682	5.7168	0.081
Residual		654.941	25.5918	

indicates that there will be a random effect for the intercept and a random effect for the slope with respect to Days at each level of Subject and, furthermore, the unconditional distribution of these random effects, $\mathscr{B} \sim \mathscr{N}(\mathbf{0}, \Sigma)$, allows for correlation of the random effects for the same subject.

We can confirm the potential for correlation of random effects within subject in the images of Λ, Σ and \mathbf{L} for this model (Fig. 4.2). The matrix Λ has

Data Analysis and Parameter Estimation

Precursor: Descriptive Growth Curve Analyses

SFYS: fit Y on t regressions, describe resulting $\hat{\theta}_{\mathrm{p}}$, fit $\hat{\theta}_{\mathrm{p}}$ on W regr, Examples: WSC, frames 1-4; Ramus, frames 1-3; SmearMiss, frames 1-3. Even non-synchronous data, get variance comps and derived quants by approx method-of-moments (Rogosa-Saner 1995); works surprisingly well.

Maximum Likelihood estimation for parameters

Special, simple case; Complete, Synchronous Data.
ml estimation equations for full data in closed form (Blomqvist 1977)
example estimation of $\operatorname{var}\left(\right.$ theta) σ_{θ}^{2}
$\mathrm{MSR}_{\mathrm{p}}$ mean squared residual for OLS fit individual p ; $\hat{\sigma}^{2}$ is Ave $\left(\mathrm{MSR}_{\mathrm{p}}\right)$.
estimate for $\sigma_{\theta}^{2}: \hat{\sigma}_{\theta}^{2}=\operatorname{SS}\left(\hat{\theta}_{\mathrm{p}}\right) / " \mathrm{n} "-\hat{\sigma}^{2} / \mathrm{SSt}$, reliability estimate for $\hat{\theta}_{\mathrm{p}}: \hat{\rho}(\hat{\theta})=\hat{\sigma}_{\theta}^{2} / S S\left(\hat{\theta}_{\mathrm{p}}\right) / " n "$

General strategy: get elements of 2×2 est. covariance matrix of θ and $\eta(0)$ for full or incomplete data. Common to All programs (LISREL HLM Tp) Tp: further substitute for derived quantities.
Also, fixed effects from separate run with W (when exists)-OLS equiv
properties of mle: bias, precision: Is reml best?
bias and mean-square-error : compare ML and REML
mle and reml simulation (50,000); complete synchronous data Estimation of $\sigma_{\theta}^{2} \operatorname{var}($ theta $)=5.0$
ML
REML
n

10	4.37	$[7.39]$	4.99	$[8.61]$
15	4.58	$[5.06]$	4.99	$[5.59]$

MAJOR MESSAGES

1. OLS equivalences for fixed effects; Method-of-moments match for random effects
2. 2×2 covariance matrix $\left(\eta_{p}(0) \theta_{p}\right.$)-- elements $\sigma_{\theta}^{2} \quad \sigma_{\eta(0)}^{2} \quad \sigma_{n(0) \theta}$-starting point for growth statistics
3. uncertainty, via s.e. and Cl , reporting essential-for small (or medium) n, BCa intervals vs standard

Properties (Moments of Observables) of Collections of Growth Curves
for $\operatorname{ndN} P$

$$
\xi_{p}(t)=\xi_{p}(0)+\theta_{p} t
$$

$$
t_{i}(\dot{\varepsilon},=1, \ldots T)
$$

$$
p(p, 1, \ldots n)
$$

Corral change, initial status exogenous var w

$$
\rho_{w}(t)=\frac{\left(t-t^{0}\right) \rho_{w \sigma}+k \rho_{w} s\left(t^{0}\right)}{\left[k^{2}+\left(t-t^{0}\right)^{2}\right]^{1 / 2}}
$$

where $t^{u}=t^{0}+k\left(\frac{\rho_{\omega} \theta}{\rho_{\omega \xi(t 0)}}\right) \quad t^{l}=t^{0}-k\left(\frac{\rho_{\omega \xi(0)}}{\rho_{\omega \theta}}\right)$
Myths 1 example: $(1.64) \quad \theta \sim U[1,9], \xi\left(t^{0}\right) \sim U[38,62]$

$$
t^{0}=2 \quad \sigma_{\theta}^{2}=5.333 \sigma_{\xi(t)}^{2}=48 \quad \rho_{\omega \theta}=0 \quad \rho_{\omega \xi(t 9}=
$$

ut tic ti $X_{i p}=\xi_{\text {ip }}+\varepsilon \quad \varepsilon \sim\left(0, \sigma_{\varepsilon}^{2}\right)_{2} \quad$ errorsin \quad arrables week I ex $\sigma_{\varepsilon}^{2}=10$

$$
\begin{aligned}
& \text { Centering, scale } \\
& t^{0}=-\sigma_{\xi}(0) \sigma / \sigma_{\sigma}^{2} \\
& \xi_{p}(t)=\xi_{p}\left(t^{0}\right)+\theta_{p}\left(t-t^{0}\right) \\
& \text { Moments } \\
& \text { Scale } K=\sigma_{\xi(t)} / \sigma_{\theta} \\
& \text { covariance } \sigma_{\xi\left(t_{1}\right) \xi\left(t_{2}\right)}= \\
& \left(t_{1}-t^{0}\right)\left(t_{2}-t^{0}\right) \sigma_{\sigma}^{2}+\sigma_{\xi\left(t^{0}\right)}^{2} \\
& \text { Varlanie } \sigma_{\xi(t)}^{2}=\sigma_{\xi\left(t^{0}\right)}^{2}+\left(\left(t-t^{0}\right) / k\right)^{2} \sigma_{\xi(t)}^{2} \\
& \sigma_{\xi(t)}^{2} / \sigma_{\xi\left(t^{0}\right)}^{2}=1+\left(\frac{t-t^{0}}{k}\right)^{2}
\end{aligned}
$$

WSC

4 observations, Wechsler Intelligence Scale for Children,Performance Scale, 86 children (times: begin first, end first, third, fifth grades). Gender is
NCFem
North Carolina Achievement Data (see Williamson, Applebaum, Epanchin, 1991). These education data are eight yearly observations on achievement test scores in math (Y), for 277 females each followed from grade 1 to grade 8, with a verbal ability background measure (W) Each individual has a row of data; the first column contains the verbal ability score, which is used as the exogenous background measure, W. The multiple longitudinal observations follow: 8 waves of achievement test scores in math (grades 1-8).

Observation time

ID	1	2	3	4	5	6	7	8	W
1	380	377	460	472	495	566	637	628	120
2	362	382	392	475	475	543	601	576	95
3	387	405	438	418	484	533	570	589	99
4	342	368	408	422	470	543	493	589	101
5	335	372	450	424	500	510	540	583	109
6	362	444	473	482	567	597	651	655	115
7	354	409	410	445	460	540	567	620	115
8	365	381	455	482	533	554	591	602	109
9	359	371	438	452	497	591	573	593	107

Ramos

Ramus Data. 4 longitudinal observations on each of 20 cases. The measurement is the height of the mandibular ramus bone (in mm) for boys each measured at $8,8.5,9,9.5$ years of age. These data, used by a number of authors, can be found in Table 4.1 of Goldstein (1979).

		8.50	9.00	9.50
ID	T-> 8.00	8.50	49.00	49.70
1	47.80	48.80	49	
2	46.40	47.30	47.70	48.40
3	46.30	46.80	47.80	48.50
4	45.10	45.30	46.10	47.20
5	47.60	48.50	48.90	49.30
6	52.50	53.20	53.30	53.70
7	51.20	53.00	54.30	54.50
8	49.80	50.00	50.30	52.70
9	48.10	50.80	52.30	54.40
10	45.00	47.00	47.30	48.30
11	51.20	51.40	51.60	51.90
12	48.50	49.20	53.00	55.50
13	52.10	52.80	53.70	55.00
14	48.20	48.90	49.30	49.80
15	49.60	50.40	51.20	51.80
16	50.70	51.70	52.70	53.30
17	47.20	47.70	48.40	49.50
18	53.30	54.60	55.10	55.30
19	46.20	47.50	48.10	48.40
20	46.30	47.60	51.30	51.80

Sneamiss.

R version 2.14 .1 (2011-12-22)
Copyright (C) 2011 The R Foundation for Statistical Computing
ISBN 3-900051-07-0
Platform: x86_64-pc-mingw32/x64 (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
Natural language support but running in an English locale
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

Pearson's product-moment correlation
data: dif and week3NC\$Y. 1
$\mathrm{t}=1.0935$, $\mathrm{df}=275$, p -value $=0.2751$
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
-0.05246573 0.18223893
sample estimates:
cor
0.06579661

```
> week3NC = read.table(file="http://www-stat.stanford.edu/~rag/stat222/ncLong.dat", header = T)
> # oops, I overwrote the wide file (I may not need it again) for the session
> #plots
> library(lattice)
> head(week3NC)
    ID time Y Z
1705810 1 380 120
```


R version 3.4.4 (2018-03-15) -- "Someone to Lean On" NC WEEK 2

```
> library(lme4)
Loading required package: Matrix
> longNC = read.table(file="http://rogosateaching.com/stat222/ncLong_data", h
> longNC$timeInt = longNC$time -1 #define initial status
> head(longNC)
\begin{tabular}{rrrrrr} 
& ID & time & Y & Z & timeInt \\
1 & 705810 & 1 & 380 & 120 & 0 \\
2 & 705810 & 2 & 377 & 120 & 1 \\
3 & 705810 & 3 & 460 & 120 & 2 \\
4 & 705810 & 4 & 472 & 120 & 3 \\
5 & 705810 & 5 & 495 & 120 & 4 \\
6 & 705810 & 6 & 566 & 120 & 5
\end{tabular}
> attach(longNC)
> ncList = lmList(Y ~ timeInt |ID, data = longNC) #fit straight-line to each
> rate = coef(ncList)[2]
> stem(rate[,1]) #stem-and-leaf of rates-of-change
The decimal point is 1 digit(s) to the right of the |
```

0

```
```

0

```


```

1 89

```
1 89
2 012224
2 012224
2 55666666777777788888899999999999999
2 55666666777777788888899999999999999
| | 00000000111111111111111122222222333333333333444444444444444
| | 00000000111111111111111122222222333333333333444444444444444
| 5555555555555666666666666666666666666677777777777777777777778888888888+8
| 5555555555555666666666666666666666666677777777777777777777778888888888+8
4 000000000000011111111111122222222222233333333333444444
4 000000000000011111111111122222222222233333333333444444
4 55556666777888999999
4 55556666777888999999
5 0000001334
5 0000001334
5 66
5 66
6 | 4
6 | 4
> fivenum(rate[,1]) # rates-of-change
[1] 9.714286 31.559524 36.416667 41.023810 64.238095
> mean(rate[,1]) # rates-of-change
[1] 36.44808
> boxplot(rate[,1]) # rates-of-change
> Zt = tapply(longNC$Z, longNC$ID, mean) #get back the 277 Z-values
> cor(Zt,rate[,1])
[1] 0.6237752
> # strong relation, see it in the scatterplot, see the Conditional (using Z)
> plot(Zt,rate[,1], pch=20)
>
```


Analyses of Collections of Growth Corves
Descriptive Analyses (smar thirst year student) sfys fit Yon regressions (Imbist)
clescuibe $\hat{\alpha}_{0} \hat{\alpha}_{1}$ plots etc $\hat{\alpha}_{1} \mid \sum_{0}$ initio size systematic indic differences (z) in chiengne $\operatorname{cor}\left(\hat{\alpha}_{1}, z\right)$ phots $\hat{\alpha}_{1}$ \qquad etc
Mixed effects models (leer)

Level $2 \quad \alpha_{0}=\gamma_{00}+u_{0}$

$$
\alpha_{1}=\gamma_{10}+u_{1}
$$

Combined (estimation)
model $y=\gamma_{00}+\gamma_{10} t+\left[\varepsilon+u_{0}+u_{1}\right]$
fixed
B. Conditional Model $\frac{\operatorname{exog} \operatorname{var} z, \omega}{\operatorname{sys} f f_{\text {chat ic indic }}}$

Lend 1. $y=\alpha_{0}+\alpha_{1} t+d_{1}$
(on ${ }^{2}$ Level 2

$$
\begin{aligned}
& \alpha_{0}=\gamma_{00}+\gamma_{01} z+u_{0} \\
& \alpha_{1}=\gamma_{10}+\gamma_{11} z+u_{1}
\end{aligned}
$$

Combined $\quad y=\gamma_{00}+\gamma_{01} z+\gamma_{10} t+\gamma_{11} z \cdot t$

$$
+\left[\varepsilon+u_{0}+u_{l}\right]
$$

model form $Y \sim Z * t$ see note on

North Carolina Data
STAT 2ZZ Week

> \#NC comparing models
$>$ week $3 N C$ = read.table(file="http://www-stat.stanford.edu/~rag/stat222/ncLong.dat", header = T) /O MG for (M) $>$ week3NC\$timeInt $=$ week3Nc\$time -1 maser in/tas) two mes $>$ head(week3NC) in ter cost)
$>$ summary(week3NC) see plots
\# week 2 descripltives, SFYS analyses; here revisit the mixed-models
> library(lme4)
$>$ ncUnc $=\operatorname{lmer}(Y \sim$ timeInt $+(1+$ timeInt $\mid I D)$, data $=$ week $3 N C)$
balanced data
$>$ summary(ncUnc) \quad (orevel 2
Linear mixed model fit by REML
Formula: Y ~ timeInt $+(1+$ timeInt | ID $)$ Data: week3NC
AIC BIC logLik deviance REMLdev
2069020724 -10339 2068020678
Random effects:
Groups Name Variance Std.Dev. Corr

mile of $\operatorname{cov}\left(\theta, n\left(\frac{1}{2}\right)\right)$ witch fun c
Number of obs: 2216 , groups: ID, 277
$>$ \# best to transform time to be zero at the time point of interest
\#\#\#\#\# (cor(rate,initial status) correct, .651)
Fixed effects:
$\begin{array}{lrrrr} & \text { Estimate } & \text { Std. Error t value } \\ \text { (Intercept) } & 342.300 & 1.336 & 256.27 \\ \text { timeInt } & 36.448 & 0.449 & 81.18\end{array}$ matey SHy
Correlation of Fixed Effects:
timeint $\underset{0}{\text { (Intr) }} 0.279 \rightarrow \Gamma_{\text {In }} t_{j}$ rate from $/ m$ list

$$
\begin{aligned}
& >\operatorname{ncCon}=\operatorname{lmer}(Y \sim \text { timeInt }+\mathrm{Z}: \text { timeInt }+(1+\text { timeInt } \mid \operatorname{ID}) \text {, data }=\text { week } 3 \mathrm{NC}) \text { \# incl } \mathrm{Z} \text { in slope L2 } \\
& >\text { summary(ncCon) } \\
& \text { Linear mixed model fit by REML } \\
& \text { Correlation of Fixed Effects: } \\
& \text { (Intr) timIng } \\
& \text { timeInt -0.010 } \\
& \text { timeInt: Z } 0.000-0.992 \\
& >\operatorname{var}(\text { rate }) \\
& \text { timeInt timeInt } \\
& >\text { nctist } \text { Degrees of freedom: } 2216 \text { total; } 1662 \text { residual } \\
& \text { Residual standard error: } 20.08697 \\
& >\text { sst }=2 *\left(.5^{\wedge} 2+1.5^{\wedge} 2+2.5^{\wedge} 2+3.5^{\wedge} 2\right) \\
& >\text { sst } \\
& \text { [1] } 42 \\
& >55.836-(20.087)^{\wedge} 2 / 42 \\
& \text { [1] } 46.22915
\end{aligned}
$$

page 2 week 2

```
> ncCon2 = lmer(Y ~ timeInt + Z*timeInt + ( 1 + timeInt | ID), data = week3NC) # incl Z in level,slope L2
```

$>$ summary(ncCon2)
Linear mixed model fit by REML
Formula: $Y \sim$ timeInt $+Z$ * timeInt $+(1+$ timeInt | ID $)$
Data: week3NC
AIC BIC logLik deviance REMLdev
2050120547 -10243 2047820485
Random effects:
Groups Name Variance Std.Dev. Corr
$\begin{array}{lrrrr}\text { ID } & \text { Intercept) } & 194.731 & 13.9546 & \\ & \text { timeInt } & 24.628 & 4.9626 & 0.379\end{array}$
Residual
$\begin{array}{lrrr}\text { timeInt } & 24.628 & 4.9626 & 0.379 \\ & 403.486 & 20.0870 & \end{array}$
Number of obs: 2216, groups: ID, 277
Fixed effects:

	Estimate	Std. Error	t value
(Intercept)	254.32454	8.83286	28.793
timeInt	0.84389	2.71301	0.311
Z	0.82948	0.08258	10.045
timeInt: Z	0.33569	0.02536	13.235

$$
\begin{aligned}
& \alpha_{0}=\gamma_{00}+\gamma_{01} z+u_{0} \\
& \alpha_{1}=\gamma_{10}+\gamma_{11} z+u_{1}
\end{aligned}
$$

Correlation of Fixed Effects:
(Intr) timInt z
timeInt $\quad-0.067$
$\begin{array}{lll}z & -0.992 \quad 0.066\end{array}$
timeInt: Z 0.066 -0.992 -0.067
$>$ confint(ncUnc) \#add-ons needed to do this now sion
Error: \$ operator not defined for this s4 class
$>$ anova(ncUnc, ncCon, ncCon2) \#formal model comparisons, nested trio
Data: week3NC
Models:
ncUnc: Y ~ timeInt + (1 + timeInt | ID $)$
ncCon: Y ~ timeInt + Z:timeInt + (1 + timeInt | ID)
ncCon2: Y ~ timeInt +Z * timeInt $+(1+$ timeInt | ID)
Df AIC BIC logLik Chisq Chi Df $\operatorname{Pr}(>C h i s q)$
ncUnc 62069220727 -10340
ncCon $72057920619-10282115.33 \quad 1<2.2 e-16$ ***
ncCon2 $82049420540-1023986.57 \quad 1<2.2 e-16$ ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
> \# ncCon2 seems a winner
$>$ anova(ncCon, ncCon2) \# just to show trio works as you would hope
Data: week3NC
Models:
ncCon: Y ~ timeInt + Z:timeInt + (1 + timeInt | ID)
ncCon2: Y ~ timeInt +Z * timeInt $+(1+$ timeInt | ID)
Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)
ncCon 72057920619 -10282
ncCon2 $82049420540-1023986.57 \quad 1<2.2 e-16$ ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

```
> #NC comparing models
> week3NC = read.table(file="http://www-stat.stanford.edu/~rag/stat222/ncLong.dat", header = T)
> week3NC$timeInt = week3NC$time -1
> head(week3NC)
\begin{tabular}{rrrrrr} 
& ID & time & Y & Z & timeInt \\
1 & 705810 & 1 & 380 & 120 & 0 \\
2 & 705810 & 2 & 377 & 120 & 1 \\
3 & 705810 & 3 & 460 & 120 & 2 \\
4 & 705810 & 4 & 472 & 120 & 3 \\
5 & 705810 & 5 & 495 & 120 & 4 \\
6 & 705810 & 6 & 566 & 120 & 5
\end{tabular}
    summary(week3NC)
        ID (a)
    Min. : 705810 Min. .1.00 Min :270.0 Min 64.0 MinimeIn
    1st Qu.: 847813 1st Qu.:2.75 1st Qu.:395.0 1st Qu.: 97.0 1st Qu.:1.75
    Median : 1046817 Median :4.50 Median :464.0 Median :106.0 Median :3.50
    Mean : 1461655 Mean :4.50 Mean :469.9 Mean :106.1 Mean :3.50
    3rd Qu.: 1290819 3rd Qu.:6.25 3rd Qu.:540.0 3rd Qu.:115.0 3rd Qu.:5.25
    Max. :11090821 Max. :8.00 Max. :762.0 Max. :145.0 Max. :7.00
> attach(week3NC)
> xtabs(~ ID + timeInt, week3NC) # balanced, complete data, Bates does this way
# week 2 we did descripitives, SFYS analyses; here revisit the mixed-models
> library(lme4)
> ncUnc = lmer(Y ~ timeInt + ( 1 + timeInt | ID), data = week3NC)
> summary(ncUnc)
Linear mixed model fit by REML
Formula: Y ~ timeInt + (1 + timeInt | ID)
    Data: week3NC
    AIC BIC logLik deviance REMLdev
    20690 20724 -10339 20680 20678
Random effects: Nariance Std.Dev. Corr
```



```
    Residual 403.487 20.0870
Number of obs: 2216, groups: ID, 277
> # best to transform time to be zero at the time point of interest
##### (cor(rate,initial status) correct, .651)
Fixed effects:
                Estimate Std. Error t value
(Intercept) 342.300 1.336 256.27
```



```
Correlation of Fixed Effects:
            (Intr)
timeInt 0.279
> ncCon = lmer(Y ~ timeInt + Z:timeInt + ( 1 + timeInt | ID), data = week3NC) # incl Z in slope L2
> summary(ncCon)
Linear mixed model fit by REML
Formula: Y ~ timeInt + Z:timeInt + (1 + timeInt | ID)
        Data: week3NC
        AIC BIC logLik deviance REMLdev
    20582 20622 -10284 20565 20568
Random effects:
    Groups Name Variance Std.Dev. Corr
```



```
    Residual 403.486 20.0870
Number of obs: 2216, groups: ID, 277
Fixed effects:
    Estimate Std. Error t value
(Intercept) 342.29994 1.33568 256.27
timeInt 
timeInt:Z 0.35266 0.02531 13.93
Correlation of Fixed Effects:
    (Intr) timInt
timeInt -0.010
timeInt:Z 0.000 -0.992
```

```
> ncCon2 = lmer(Y - timeInt + Z*timeInt + ( 1 + timeInt | ID), data = week3NC) # incl z in level,slope L2
> summary(ncCon2)
Linear mixed model fit by REML
Formula: Y ~ timeInt + Z * timeInt + (1 + timeInt | ID)
    Data: week3NC
    AIC BIC logLik deviance REMLdev
    20501 20547-10243 20478 20485
Random effects:
    Groups Name Variance Std.Dev. Corr
```



```
    Residual 403.486 20.0870
Number of obs: 2216, groups: ID, 277
Fixed effects:
    Estimate Std. Error t value
(Intercept) 254.32454 8.83286 28.793
timeInt 0.84389 2.71301 0.311
\begin{tabular}{llll}
\(Z\) & 0.82948 & 0.08258 & 10.045
\end{tabular}
\begin{tabular}{llll} 
timeInt: \(Z\) & 0.33569 & 0.02536 & 13.235
\end{tabular}
Correlation of Fixed Effects:
            (Intr) timInt Z
timeInt -0.067
Z -0.992 0.066
timeInt:Z 0.066 -0.992 -0.067
> confint(ncUnc) #add-ons needed to do this
Error: $ operator not defined for this S4 class
> anova(ncUnc, ncCon, ncCon2) #formal model comparisons, nested trio
Data: week3NC
Models:
ncUnc: Y ~ timeInt + (1 + timeInt | ID)
ncCon: Y ~ timeInt + Z:timeInt + (1 + timeInt | ID)
ncCon2: Y ~ timeInt + Z * timeInt + (1 + timeInt | ID)
            Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)
ncUnc 6 20692 20727 -10340
ncCon 7 20579 20619 -10282 115.33 1 < 2.2e-16 ***
ncCon2 8 20494 20540 -10239 86.57 1 < 2.2e-16 ***
---
Signif. codes: 0 ،***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
> # ncCon2 seems a winner
> anova(ncCon, ncCon2) # just to show trio works as you would hope
Data: week3NC
Models:
ncCon: Y ~ timeInt + Z:timeInt + (1 + timeInt | ID)
ncCon2: Y ~ timeInt + Z * timeInt + (1 + timeInt | ID)
            Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)
ncCon 7 20579 20619 -10282
ncCon2 8 20494 20540 -10239 86.57 1 < 2.2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
>
*-=====================
page1 method of moments insert
> ncList = lmList(Y ~ timeInt |ID, data = week3NC) #fit straight-line to each subject
> rate = coef(ncList)[2]
> var(rate)
                                    timeInt
timeInt 55.83613
> ncList
Degrees of freedom: 2216 total; 1662 residual
Residual standard error: 20.08697
> sst = 2*(.5^2 + 1.5^2 + 2.5^2 +3.5^2)
> sst
[1] 42
> 55.836-(20.087)^2/42
[1] 46.22915
```


\#\#ncCon2 without redundent model term

week3NC = read.table(file="http://statweb.stanford.edu/~rag/stat2
> attach (week3NC)
> detach (week3NC)
> week3NC\$timeInt $=$ week3NC\$time -1
> attach (week3NC)
$>\operatorname{ncCon} 2=\operatorname{lmer}(Y \sim \mathrm{Z} *$ timeInt $+(1+$ timeInt \mid ID), data $=$ week 3
> summary (ncCon2)
Linear mixed model fit by REML ['lmerMod']
Formula: $Y \sim Z$ * timeInt $+(1+$ timeInt | ID)
Data: week3NC

REML criterion at convergence: 20485.2

Scaled residuals:

Min	$1 Q$	Median	$3 Q$	Max
-3.5617	-0.6065	-0.0352	0.5934	3.1665

Random effects:

Groups	Name	Variance	Std.Dev. Corr	
ID	(Intercept)	194.73	13.955	
	timeInt	24.63	4.963	0.38
Residual		403.49	20.087	
Number of obs: $2216, ~ g r o u p s:$	ID, 277			

Fixed effects:
Estimate Std. Error t value

(Intercept)	254.32454	8.83285	28.793
Z	0.82948	0.08258	10.045
timeInt	0.84389	2.71313	0.311
Z:timeInt	0.33569	0.02537	13.235

Correlation of Fixed Effects:

	(Intr)	Z	timInt
Z	-0.992		
timeInt	-0.066	0.066	
Z:timeInt	0.066	-0.066	-0.992

```
##Stat222, week2
>
> #NC residual plots
> week3NC = read.table(file="http://rogosateaching.com/stat222/ncLong data", header = T)
> week3NC$timeInt = week3NC$time -1
> ncUnc = lmer(Y ~ timeInt + ( 1 + timeInt | ID), data = week3NC)
> summary(ncUnc)
Linear mixed model fit by REML ['lmerMod']
Formula: Y ~ timeInt + (1 + timeInt | ID) Data: week3NC
REML criterion at convergence: 20677.8
Scaled residuals:
\begin{tabular}{rrrrr} 
Min & \(1 Q\) & Median & \(3 Q\) & Max \\
-3.6596 & -0.6056 & -0.0257 & 0.5941 & 3.2018
\end{tabular}
Random effects:
```



```
Fixed effects:
                    Estimate Std. Error t value
(Intercept) 342.300 1.336 256.27
timeInt 36.448 0.449 81.18
Correlation of Fixed Effects:
    (Intr)
timeInt 0.279 ## . 28 is sample value of Cor(alpha_hat_0, alpha_hat_1)
> plot(ncUnc, id = .01) #see plot
> ncCon2 = lmer(Y ~ Z*timeInt + ( 1 + timeInt | ID), data = week3NC) # incl z in level,slope L2
> summary(ncCon2)
Linear mixed model fit by REML ['lmerMod']
Formula: Y ~ Z * timeInt + (1 + timeInt | ID) Data: week3NC
REML criterion at convergence: 20485.2
```

```
Scaled residuals:
    Min 1Q Median 30 Max
-3.5617 -0.6065 -0.0352 0.5934 3.1665
Random effects:
    Groups Name Variance Std.Dev. Corr
    ID (Intercept) 194.73 13.955
            timeInt 24.63 4.963 0.38
    Residual 403.49 20.087
Number of obs: 2216, groups: ID, 277
Fixed effects:
    Estimate Std. Error t value
(Intercept) 254.32454 8.83286 28.793
timeInt 0.84389 2.71313 0.311
Z 0.82948 0.08258 10.045
timeInt:Z 0.33569 0.02537 13.235
Correlation of Fixed Effects:
    (Intr) timInt Z
timeInt -0.066
z -0.992 0.066
timeInt:Z 0.066 -0.992 -0.066
> confint(ncCon2)
Computing profile confidence intervals ...
                    2.5 % 97.5 %
.sig01 11.6988560 16.1328515
.sig02 0.1691589 0.6087485
.sig03 4.3873745 5.5462211
.sigma 19.4229852 20.7896705
(Intercept) 237.0150973 271.6339817
timeInt -4.4729277 6.1607130
z 0.6676501 0.9913026
timeInt:Z 0.2859872 0.3854013
> plot(ncCon2, id = .01) # see plot 2
```

```
##Stat222, week2
>
> #NC residual plots
> week3NC = read.table(file="http://rogosateaching.com/stat222/ncLong data", header = T)
> week3NC$timeInt = week3NC$time -1
> ncUnc = lmer(Y ~ timeInt + ( 1 + timeInt | ID), data = week3NC)
> summary(ncUnc)
Linear mixed model fit by REML ['lmerMod']
Formula: Y ~ timeInt + (1 + timeInt | ID) Data: week3NC
REML criterion at convergence: 20677.8
Scaled residuals:
\begin{tabular}{rrrrr} 
Min & \(1 Q\) & Median & \(3 Q\) & Max
\end{tabular}
Random effects:
```



```
Fixed effects:
            Estimate Std. Error t value
(Intercept) 342.300 1.336 256.27
timeInt 36.448 0.449 81.18
Correlation of Fixed Effects:
    im(Intr)
## . 28 is sample value of Cor(alpha_hat_0, alpha_hat_1)
> plot(ncUnc, id = .01) #see plot
> ncCon2 = lmer(Y ~ Z*timeInt + ( 1 + timeInt | ID), data = week3NC) # incl z in level,slope L2
> summary(ncCon2)
Linear mixed model fit by REML ['lmerMod']
Formula: Y ~ Z * timeInt + (1 + timeInt | ID) Data: week3NC
REML criterion at convergence: 20485.2
```

```
Scaled residuals:
    Min 10 Median 30 Max
-3.5617 -0.6065 -0.0352 0.5934 3.1665
Random effects:
    Groups Name Variance Std.Dev. Corr
    ID (Intercept) 194.73 13.955
            timeInt 24.63 4.963 0.38
    Residual 403.49 20.087
Number of obs: 2216, groups: ID, 277
Fixed effects:
    Estimate Std. Error t value
(Intercept) 254.32454 8.83286 28.793
timeInt 0.84389 2.71313 0.311
z 0.82948 0.08258 10.045
timeInt:Z 0.33569 0.02537 13.235
Correlation of Fixed Effects:
    (Intr) timInt Z
timeInt -0.066
z -0.992 0.066
timeInt:Z 0.066 -0.992 -0.066
> confint(ncCon2)
Computing profile confidence intervals ...
                    2.5 % 97.5 %
.sig01 11.6988560 16.1328515
.sig02 0.1691589 0.6087485
.sig03 4.3873745 5.5462211
.sigma 19.4229852 20.7896705
(Intercept) 237.0150973 271.6339817
timeInt -4.4729277 6.1607130
Z 0.6676501 0.9913026
timeInt:Z 0.2859872 0.3854013
> plot(ncCon2, id = .01) # see plot 2
```


STAT 222 WEEK 3
R version 3.2.2 (2015-08-14) -- "Fire Safety"
Copyright (C) 2015 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 (64-bit)
> library(lme4)
Loading required package: Matrix
> library(lattice)
> setwd("D:
drr15
ed401D
week3
")
> sleeplmList $=$ lmList (Reaction \sim Days |Subject, data $=$ sleepstudy)
> sleeplmList \# OLS each subject separately (individual 'fixed')
Call: lmList (formula = Reaction ~ Days \mid Subject, data = sleepstudy Coefficients:

(Intercept)	Days
244.1927	21.764702
205.0549	2.261785
203.4842	6.114899
289.6851	3.008073
285.7390	5.266019
264.2516	9.566768
275.0191	9.142045
240.1629	12.253141
263.0347	-2.881034
290.1041	19.025974
215.1118	13.493933
225.8346	19.504017
261.1470	6.433498
276.3721	13.566549
254.9681	11.348109
210.4491	18.056151
253.6360	9.188445
267.0448	11.298073

Degrees of freedom: 180 total; 144 residual
Residual standard error: 25.59182
$>$ mean (coef(sleeplmList) [, 1]) \# sample means match lmer fixed eff [1] 251.4051
> mean(coef(sleeplmList) [, 2])
[1] 10.46729
$>$ \#mean int and slope match lmer Fixed effects results
$>$ sleeplmer $=$ lmer (Reaction \sim Days $+(1+$ Days|Subject), sleepstudy
$>$ summary(sleeplmer) \# unconditional straight-line growth mixed mo

Linear mixed model fit by REML ['lmerMod']
Formula: Reaction ~ Days + (1 + Days | Subject)
Data: sleepstudy
REML criterion at convergence: 1743.6
Scaled residuals:

Min	$1 Q$	Median	$3 Q$	Max
-3.9536	-0.4634	0.0231	0.4634	5.1793

Random effects:

Groups	Name	Variance	Std.Dev. Corr	
Subject	(Intercept)	$\underline{612.09}$	24.740	
	$\underline{35.07}$	5.922	0.07	
Residual	654.94	25.592		

Number of obs: 180, groups: Subject, 18
Fixed effects:
Estimate Std. Error t value
(Intercept) $251.405 \quad 6.825 \quad 36.84$
Days
10.467
$1.546 \quad 6.77$
Correlation of Fixed Effects:
(Intr)
Days -0.138
> plot(confint(sleeplmList)) \# shows CI for slope and intercept lmL
> fixef(sleeplmer) \# fixed: same for all units
(Intercept) Days
$251.40510 \quad 10.46729$
> ranef(sleeplmer) \# individual; random effects (centered at 0) eac \$Subject
(Intercept) Days
308 2.2585654 9.1989719
309 -40.3985769 -8.6197032
$310-38.9602458-5.4488799$
$330 \quad 23.6904985$-4.8143313
331 22.2602027 -3.0698946
$332 \quad 9.0395259-0.2721707$
333 16.8404311 -0.2236244
$334-7.2325792 \quad 1.0745761$
335 -0.3336958-10.7521591

337	34.8903508	8.6282840
349	-25.2101104	1.1734142
350	-13.0699567	6.6142050
351	4.5778352	-3.0152572
352	20.8635924	3.5360133
369	3.2754530	0.8722166
370	-25.6128694	4.8224646
371	0.8070397	-0.9881551
372	12.3145393	1.2840297

> mean(unlist((ranef(sleeplmer))))
[1] 3.297408e-13
> dotplot(ranef(sleeplmer, postVar = TRUE))
\$Subject
Warning message:
In ranef.merMod(sleeplmer, postVar = TRUE) :
'postVar' is deprecated: please use 'condVar' instead
> dotplot(ranef(sleeplmer, condVar $=$ TRUE)) \# random effects and CI \$Subject
$>$ qqmath(ranef(sleeplmer, condVar $=T R U E))$ \# prefer when many rando \$Subject
\#\#\#\#\#\# make Bates BLUP plot to show shrinkage toward fixed effects \#\# adapt Bates code

```
> attach(sleepstudy)
> df <- coef(lmList(Reaction ~ Days | Subject, sleepstudy))
> fclow <- subset(df, '(Intercept)` < 251)
> fchigh <- subset(df, '(Intercept)` > 251)
> cc1 <- as.data.frame(coef(sleeplmer)$Subject)
> names(ccl) <- c("A", "B")
> df <- cbind(df, cc1)
> ff <- fixef(sleeplmer)
> with(df,
+ print(xyplot(`(Intercept)` ~ Days, aspect = 1,
+ x1 = B, y1 = A,
+ panel = function(x, y, x1, y1, subscripts, ...)
+ panel.grid(h = -1, v = -1)
```


Fig. 1.10 95\% prediction intervals on the random effects in fm1ML, shown as a dotplot.

Fig. 1.11 95\% prediction intervals on the random effects in fm1ML versus quantiles of the standard normal distribution.

interval. The ranef extractor takes an optional argument, postVar = TRUE, which adds these dispersion measures as an attribute of the result. (The name stands for "posterior variance", which is a misnomer that had become established as an argument name before I realized that it wasn't the correct term.)

We can plot these prediction intervals using
> dotplot(ranef(fm1ML, postVar = TRUE))
(Fig. 1.10), which provides linear spacing of the levels on the y axis, or using > qqmath(ranef(fm1ML, postVar=TRUE))
(Fig. 1.11), where the intervals are plotted versus quantiles of the standard normal.

The dotplot is preferred when there are only a few levels of the grouping factor, as in this case. When there are hundreds or thousands of random effects the qqmath form is preferred because it focuses attention on the "important few" at the extremes and de-emphasizes the "trivial many" that are close to zero.

Subject

Subject


```
    x1 <- x1[subscripts]
    y1 <- y1[subscripts]
    larrows(x, y, x1, y1, type = "closed", leng
        angle = 15, ...)
    lpoints(x, y,
    pch = trellis.par.get("superpose.sy
    col = trellis.par.get("superpose.sy
    lpoints(x1, y1,
    pch = trellis.par.get("superpose.sy
    col = trellis.par.get("superpose.sy
lpoints(ff[2], ff[1],
    pch = trellis.par.get("superpose.sy
    col = trellis.par.get("superpose.sy
    ltext(fclow[,2], fclow[,1], row.names(fclow
    adj = c(0.5, 1.7))
    ltext(fchigh[,2], fchigh[,1], row.names(fch
        adj = c(0.5, -0.6))
    },
    key = list(space = "top", columns = 3,
        text = list(c("Mixed model", "Within-group", "P
        points = list(col = trellis.par.get("superpose.
        pch = trellis.par.get("superpose.symbol")$pch[1
        )))
>
## it actually worked
```


(1)

Models for Lat Vent trajectories week $3 / 1 / 12$ see inked plots, Males Females Attributes for each individual

Gender: sex $=1$ if male
Age Mn: average age of observation (1.e. if obs at age 40424648

Age $M_{n}=4.4$
Age : observation times for an individual centare for Age Mn
(be. for above. Age $C=\{-4,-2,2,4\}$ for that individual)

Level I model (for individual i)

$$
V_{o l_{i j}}=\alpha_{o i}+\alpha_{1 i} \operatorname{age} C_{i j}+\varepsilon_{i j}
$$

oi mean vol level for i
$\alpha_{i i}$ slope of vol trajectory on age for i
Level II model (basic)

$$
\begin{aligned}
& \operatorname{le}^{v^{v}} \alpha_{0}=\gamma_{00}+\gamma_{01} \operatorname{age} M_{n}+\gamma_{02} \operatorname{sex} M+u_{0} \\
& \text { sop }^{100^{n}} \alpha_{1}=\gamma_{10}+\gamma_{11} \text { age } M_{n}+\gamma_{12} \operatorname{sex} M+U_{1}
\end{aligned}
$$

both mean Vol and slope merease w/ Age Mn and constant displacement for gender $(r>0)$

Combined Model (estimation model) substitute
α_{0}, α_{1} hevelII into Level I

$$
\begin{aligned}
\text { Vol } \sim & \gamma_{01} \text { age } M_{n}+\gamma_{02} s e x M+\gamma_{10} \text { age } C \\
& +\gamma_{11} \text { age } M_{n} \times \operatorname{age} C+\gamma_{12} s c x M \times \operatorname{age} C \\
& +\left[\varepsilon+u_{0}+u_{1} \text { terms }\right]
\end{aligned}
$$

(x indicates multiplication)

* notation, $A * B$ indicates Main $A, B, A: B$
collect terms for Imer model
Vol ~ age $M_{n} *$ aged + sex $M *$ age
summary for Imer object

Even more, expand model to allow increase in $\alpha_{j i}$ (slope) for Male to depend on age (ag eMn?

γ_{13} :gender difference is α_{1} on age Mn gradient
Level II model extension

$$
\begin{aligned}
\alpha_{1}=\gamma_{10} & +\gamma_{11} \operatorname{agc} M_{n}+\gamma_{12} \operatorname{sex} M \\
& +\gamma_{13} \operatorname{sex} M \times \text { age } M_{n}
\end{aligned}
$$

Combincel (estimation) model
Vol ~ sex $M *$ age $M_{n} *$ age - sexM:age Mr or equiv
Vol \sim age M_{n} age $C+$ sex $M *$ age $C+$ sexM:age $M_{n}:$ age

