Lecture slides, week 8 week 8 (pdf) Audio companion, week 8 parta partb

Matching Methods for Observational Data: Part II

Lecture topics

- Computational Examples of Matching Methods
- 1. Ben Hansen's Nuclear Plants data
 - optmatch exs. nuclear plants, gender ascii version for some Ben Hansen matching exs using MatchIt/optmatch
 - Pair matching--nuclear plants data. 1:2 optimal pair matching using MatchIt and pairmatch in optmatch plus balance diagnostics.
- 2. Lalonde job training data
- Lalonde NSW data. Subclassification/Stratification and Full matching.
 - Lalonde data class handout
 - Rogosa R-session (using R 3.3.3) 4/1/18 redo in R 3.4.4 (sparse)
 - 2019 lalonde Matchit: full matching, balance with cobalt love.plot and bal.tab
 - 2019 lalonde optmatch: fullmatch with outcome analysis
- Legacy Stat209 Lab 4, Lalonde Data, is arranged in pieces
- a. <u>Lab4, exposition and commands</u>
- b. Lab 4, Rogosa R-session, Base (sections 1-3)
- c. Lab 4, Rogosa R-session, additional matching exercises (incl secs 4-6).
- d. Lab 4, Rogosa R-session: not done until ancova is run
- 3. Alternative (non-matching) propensity score analyses. Propensity score weighting: Inverse Probability of Treatment Weighting (IPTW). twang package from RAND, <u>tutorials and resources</u>. Also, an <u>exposition using the Lalonde data</u> and <u>another exposition</u>

R Implementations and Resources

- 1. MatchIt provides a wrapper that can call optmatch or Sekhon's genetic matching
- MatchIt: Nonparametric Preprocessing for Parametric Casual Inference Daniel Ho, Kosuke Imai, Gary King, Elizabeth Stuart
- MatchIt vignette
- JSS May 2011 exposition: MatchIt: Nonparametric Preprocessing for Parametric Causal Inference

2. Ben Hansen (local hero) optmatch manual <u>R News Oct 2007</u>

optmatch:fullmatch vignette optmatch another version (another good tutorial optmatch Functions for Optimal Matching) Hansen presentation: <u>Flexible</u>, Optimal Matching for Comparative Studies Using the optmatch package

Additional exercises (checking balance) using the nuclearplants data (class handout ex) from Mark Fredrickson here

Optmatch application paper: Full matching in an observational study of coaching for the SAT. (Scholastic Assessment Test) Journal of the American Statistical Association; 9/1/2004; Hansen, Ben B.

Another optmatch example presentation: <u>Attributing Effects to a Get-Out-The-Vote Campaign Using Full Matching and Randomization Inference</u> Jake Bowers and Ben Hansen. <u>Data archive and computing resources</u> for the New Haven get-out-the-vote

3. Cobalt: Using cobalt with Other Preprocessing Packages Covariate Balance Tables and Plots: A Guide to the cobalt Package

4. R^{(Package PSAgraphics: <u>Vignette JSS</u> PSAgraphics: An R Package to Support Propensity Score Analysis *Journal of Statistical Software* February 2009, Volume 29, Issue 6.}

5. Matching package <u>Multivariate and Propensity Score Matching Software for Causal Inference</u> Jasjeet S. Sekhon

Costs of nuclear plants

A small comparative study from a classic text


```
help.matchit
```

Description

The help.matchit command launches html help for Matchit commands and supported methods. The full manual is available online at http://gking.harvard.edu/matchit.

Usage

```
help.matchit(object)
```

Arguments

object	a character string representing a Matchit command or model. help.matchit ("command")
	will take you to an index of Matchit commands and help.matchit("method")
	will take you to a list of matching methods. The following inputs are currently
	available: exact, nearest, subclass, full, optimal.

Author(s)

 $\label{eq:linear} \begin{array}{l} \mbox{Daniel Ho} <\!\!\langle \mbox{daniel.ho} @\ \mbox{yale.edu} \rangle\!\!>; \ \mbox{Kosuke Imai} <\!\!\langle \mbox{kimai} @\ \mbox{princeton.edu} \rangle\!\!>; \ \mbox{Gary King} <\!\!\langle \mbox{king} @\ \mbox{harvard.edu} \rangle\!\!>; \ \mbox{Elizabeth Stuart} <\!\!\langle \mbox{stuart} @\ \mbox{stat.harvard.edu} \rangle\!\!> \end{array}$

See Also

The complete document is available online at http://gking.harvard.edu/matchit.

Lab 4 data for matching using Matchlt Is job training effective???

lalonde

Data from National Supported Work Demonstration and PSID, as analyzed by Dehejia and Wahba (1999).

Description

This is a subsample of the data from the treated group in the National Supported Work Demonstration (NSW) and the comparison sample from the Current Population Survey (CPS). This data was previously analyzed extensively by Lalonde (1986) and Dehejia and Wahba (1999). The full dataset is available at http://www.columbia.edu/~rd247/nswdata.html.

Usage

From Lab 4 data (lalonde)

- > dim(lalonde) [1] 614 10 [1]
- > names(lalonde) "treat" "age" "educ" "black" "hispan" "married" "nodegree" "re74" "re75" "re78"
 > attach(lalonde) > table(treat) treat 0 1 0 429 185 0
- > lalonde[1:10,] treat age educ black hispan married nodegree re74 re75 re78

match.data

Format

614 actually

A data frame with 313 observations (185 treated, 429 control). There are 10 variables measured for each individual. "treat" is the treatment assignment (1=treated, 0=control). "age" is age in years. "educ" is education in number of years of schooling. "black" is an indicator for African-American (1=African-American, 0=not). "hispan" is an indicator for being of Hispanic origin (1=Hispanic, 0=not). "married" is an indicator for married (1=married, 0=not married). "nodegree" is an indicator for whether the individual has a high school degree (1=no degree, 0=degree). "re74" is income in 1974, in U.S. dollars. "re75" is income in 1975, in U.S. dollars. "re78" is income in 1978, in U.S. dollars.

Source

http://www.columbia.edu/~rd247/nswdata.html

References

Lalonde, R. (1986). Evaluating the econometric evaluations of training programs with experimental data. *American Economic Review* 76: 604-620. \

Dehejia, R.H. and Wahba, S. (1999). Causal Effects in Nonexperimental Studies: Re-Evaluating the Evaluation of Training Programs. *Journal of the American Statistical Association* 94: 1053-1062.

match.data

Output Matched Data Sets

Description

match.data outputs matched data sets from matchit().

Usage

```
match.data <- match.data(object, group="all", distance = "distance",
weights = "weights", subclass = "subclass")
```

Arguments

object	The output object from matchit (). This is a required input.
group	This argument specifies for which matched group the user wants to extract the data. Available options are "all" (all matched units), "treat" (matched units in the treatment group), and "control" (matched units in the control group). The default is "all".
distance	This argument specifies the variable name used to store the distance measure. The default is "distance".
weights	This argument specifies the variable name used to store the resulting weights from matching. The default is "weights".
subclass	This argument specifies the variable name used to store the subclass indicator. The default is "subclass".

Value

Returns a subset of the original data set sent to this-is-escaped-code{, with ju

Next Up Previous Contents HOME

Next: Exact Matching Up: A User's Guide by Previous: Notation Contents

The Lalonde Data

For all of our examples, we use data from the job training program analyzed in <u>Lalonde (1986)</u> and <u>Dehejia & Wahba (1999)</u>. A subsample of the data consisting of the National Supported Work Demonstration (NSW) treated group and the comparison sample from the Population Survey of Income Dynamics (PSID) is included in MATCHIT, and the full dataset is available at <u>http://www.columbia.edu/~rd247/nswdata.html.⁵</u>

The variables in this dataset are in Table $\underline{1}$ below. One causal effect of interest is the impact that participation in the job training program, treat==1, had on real earnings in 1978, re78, for those that participated in the program, i.e., the average treatment effect on the treated (ATT):

where re78(treat=1) represents the potential outcome under the treatment of the job program, and re78(treat=0) under control. To be clear, note that the first term (inside the expectation) in Equation $\underline{1}$ is observed, whereas the second term is the *unobserved* counterfactual of real earnings if participants had not participated. The nature of causal inference is that one of the two terms in the difference will always be unobserved. The same expression of the ATT, in mathematical notation is:

(2)

Name	Description							
Outcome (¹⁷⁽¹⁾)								
re78 Real earnings (1978)								
Treatmen	nt Indicator ($^{T_i=1}$)							
treat Treated in job training program from March 1975-June 1977 (1 if treated, 0 if not treated)								
Pre-treatment Covariates (
age	Age							
educ	Years of education							
black	Race black (1 if black, 0 otherwise)							
hispan Race hispanic (1 if Hispanic, 0 otherwise)								
married	Marital status (1 if married, 0 otherwise)							
nodegree High school degree (1 if no degree, 0 otherwise)								
re74	Real earnings (1974)							
re75 Real earnings (1975)								

Table 1: Description of Lalonde data

Next Up Previous Contents HOME

Next: Exact Matching Up: <u>A User's Guide by</u> Previous: <u>Notation</u> Contents Gary King 2005-03-09

Propensity Score Methods

- Rosenbaum and Rubin. "The Central Role of the Propensity Score in Observational Studies." Biometrika 1983.
- Observational study analogue of complete randomization
- The propensity score is the probability of treatment versus control as a function of observed covariates
 - Model the reasons for treatment versus control at the level of the decision makers
 - For example, logistic regression model to predict cigarette versus cigar/pipe smoking with age, education, income, etc. as predictors
- Then subclassify (or match) on the propensity score as if it were the only covariate, e.g., 5-10 subclasses
- If correctly done, this creates balance within each subclass on ALL covariates used to estimate the propensity score

Matching in Statistics: Cochran's School in the 1980s

Propensity score

- Close matches on multivariate x not needed if you can match closely on scalar φ(x) (Rosenbaum and Rubin, 1983, 1984).
- ► Good to combine matching on x with matching on φ(x), privileging closeness on φ(x) (Rosenbaum and Rubin, 1985).
- ► Computerized matching → optimal matching (Rosenbaum, 1989)

(日) (日) (日) (日) (日) (日) (日)

Stat 209 Week & Propensity Scores Let Z=1,0 T/C X vector of covariates propensity score e(x) = Pr(Z=11x) Scolar ê(x) cond'I prob unit up vector & observed cov. assigned to T (3=1) Inm Balancing score b(x) s.b. conditional distrib of & given b(x) same of treated and control mits X IL ZIB(X), Coursest (low dimen) bulancing score is propensity score. Pr(X, Zle) = Pr{X|e)Pr(Zle) The (result) Approx 90% reduction in bias for subclassifying at guintiles of population propensity score. By = E(fu)/Z=1) = E(fu)/Z=0), By atterstrut, heatin percent reduction in bies 100(1- 15/BZ) = 90% RosRubin (i) The propensity score is a balancing score. 1983 Broundalsa (ii) Any score that is 'finer' than the propensity score is a balancing score; moreover, x is the finest balancing score and the propensity score is the coarsest. 1484 JASA If treatment assignment is strongly ignorable given x, then it is strongly (iii) ignorable given any balancing score (iv) At any value of a balancing score, the difference between the treatment and control means is an unbiased estimate of the average treatment effect at that value of the balancing score if treatment assignment is strongly ignorable. Consequently, with strongly ignorable treatment assignment, pair matching on a balancing score, subclassification on a balancing score and covariance adjustment on a balancing score can all produce unbiased estimates of treatment effects. (v) Using sample estimates of balancing scores can produce sample balance on x. Applications: Rubin Breast Cancer, Love (RR'84) CAD, Love Aspirin, Hunson SAT coaching, Substance Rosenburn, Danish downers Abuse (UNK Lalonde duta Rubin AnnInt Medicine Lab 4 stratification $BC \rightarrow T$ Table 3: Estimated 5-year Survival Rates for Node-Negative Patients in SEER from Tables 5 and 7 in U.S. GAO Report (1994). AIM pub > table(propbin, treat) **Propensity Score** treat counts 0 1 Estimate n* Estimate* propbin Subclass Treatment n 1 (0, 0.0401]122 88.8% 85.6% 54 Breast Conservation 56 (0.0401,0.0872] 116 7 1 90.5% 86.7% 966 1,008 Mastectomy (0.0872,0.27] 101 21 86.0% 82.8% 102 71 106 53 **Breast Conservation** (0.27, 0.671]2 87.7% 917 964 82.8% Mastectomy 37 85 (0.671, 1]> tapply(re78, list(propbin, treat),mean) 85.2% 184 89.4% Breast Conservation 193 3 841 91.4% 88.8% 866 0 1 Mastectomy means 0 92.0% 10467 88.7% 279 (0, 0.0401]289 **Breast Conservation** 4 (0.0401,0.0872] 5797 7919 91.5% 742 87.3% 978 Mastectomy rc18 6043 9211 (0.0872, 0.27]90.7% 89.0% 453 462 Breast Conservation 4977 5819 (0.27,0.671] 90.7% 604 88.5% 589 Mastectomy 4666 6030 (0.671, 1]omitting patients whose deaths were unrelated to cancer.

```
LAB 4 excerpt
```

```
# now do the logistic regression that computes propensity scores (matching packages will do this for
> glm.lalonde = glm( treat ~ age + educ + black + hispan + married + nodegree + re74 + re75,
+ data = lalonde, family = binomial)
> propen = fitted(glm.lalonde) # now we have the propensity scores, Lab script calls these propScore
> tapply(propen, treat, quantile) # look at overlap via 5-number summary (or side-by-side boxplots)
                                    not real good overlap, as noted in class handout
$`0`
     0%
            25%
                    50%
                            75%
                                    100%
0.00908 0.03888 0.07585 0.19514 0.78917
$`1`
     0%
            25%
                    50%
                            75%
                                   100%
0.02495 0.52646 0.65368 0.72660 0.85315
> # the common use of the propensity scores (backed by theory, class handout 2/26))
> # is to stratify by quintiles
> # the simple-minded way I do it is to use "cut", Lab script is fancier programming
> ?cut # this is a simple function to create bins
> k = 1:4
> quantile(propen, k/5)
    20%
            40%
                    60%
                            80%
0.04015 0.08721 0.26978 0.67085
> propbin = cut(propen, c(0, .04015,.08721,.26978,.67085,1))
> table(prophin, treat) # either way you display it, we do not have good overlap in the bottom
                          two quintiles, lower estimated probability for being in treatment
                          for treatment cases
                 treat
propbin
                    0
                        1
  (0, 0.0401]
                  122
                        1
  (0.0401, 0.0872) 116
                        7
  (0.0872, 0.27]
                  101
                       21
  (0.27, 0.671]
                   53
                       71
  (0.671,1]
                   37 85
> tapply(re78, list(propbin, treat),mean) # here are the mean diffs in re78 the outcome
                                              stratified by propensity quintile
# direction of mean diffs favors treatment, job training
                    0
                         1
(0, 0.0401]
                10467
                         0
(0.0401,0.0872] 5797 7919
(0.0872, 0.27]
                 6043 9211
(0.27, 0.671]
                 4977 5819
(0.671,1]
                 4666 6030
> t.test(re78[propbin == bins[5]] ~ treat[propbin == bins[5]]) # t-test for quintile 5
```

Optmatch creator

Home > People > U-M Researchers . Off-Campus Researchers . Fellows . Trainees . Staff . Honors . In the News

RESEARCH PUBLICATIONS PEOPLE TRAINING DATA & INFORMATION SERVICES EVENTS & NEWS ABOUT INTRANET

Email Address 734-647-5456

🌃 📲 Ben Hansen

Research Affiliate, Population Studies Center; Assistant Professor, Statistics Department; Faculty Associate, Survey Research Center

Ph.D., University of California, Berkeley M.A., University of California, Berkeley

Ben Hansen's research interests include optimal matching, propensity-score adjustments for

Funded Research:

Human Subjects Protection and Disclosure Risk Analysis (NICHD)

observational studies, quasiexperimental methods, and program assessment. In recent work, he investigates informed consent and perception of risk in survey participation; how to reduce disclosure risk; and how to increase security in the dissemination of human subjects data.

New Publications

Rogowski, Freedman, Schoeni. "Neighborhoods and Health of Elderly." PSC Research Report 06-600.

Geronimus, Hicken, Keene, & Bound. "Age Patterns of Allostatic Load Scores among Blacks and Whites." *AJPH*, 2006.

Farley and Haaga, eds. *The American People: Census 2000.*

Recent Publications

Journal Articles

Evans, S.E., Ben Hansen, P.B. Stark. "Minimax expected measure confidence sets for restricted location parameters." *Bernoulli*, 11:571-590. 2005.

Hansen, Ben. "Full Matching in an Observational Study of Coaching for the SAT." Journal of the American Statistical Association, 99:609-618. 2004.

Contact . People . Intranet . Population Studies Center . U of M . $\textcircled{\mbox{ or states}}$ 2006 $$\mbox{ xhtml}$$. css

Full matching with propensity scores...

IPTW

- relieves the analyst of the need to reject lots of control subjects in order to get comparable groups;
- can be accomplished with the help of my add-on package for R, optmatch;
- does not ward off problems due to lurking variables, a.k.a. hidden bias, or unmeasured confounding; but —
- in the absence of hidden bias, should reconstruct a "lurking experiment"; and
- offers greater promise of success at this than either multiple regression or matching with a xed number k of controls.

Oh, did I mention that there is a paper? Hansen, B.B. (2004), Full matching in an observational study of coaching for the SAT, *JASA* **99**, 609–618.

Package 'MatchIt'

February 22, 2017

Version 2.4-22
Date 2017-02-22
Title Nonparametric Preprocessing for Parametric Casual Inference
Author Daniel Ho <daniel.e.ho@gmail.com>, Kosuke Imai <kimai@princeton.edu>, Gary King <king@harvard.edu>, Elizabeth Stuart <stuart@stat.harvard.edu></stuart@stat.harvard.edu></king@harvard.edu></kimai@princeton.edu></daniel.e.ho@gmail.com>
Maintainer Kosuke Imai <kimai@princeton.edu></kimai@princeton.edu>
Depends R (>= 2.6), MASS
Suggests cem, optmatch, Matching, nnet, rpart, mgcv, WhatIf, R.rsp
VignetteBuilder R.rsp
Description Selects matched samples of the original treated and control groups with similar covariate distributions can be used to match exactly on covariates, to match on propensity scores, or perform a variety of other matching procedures. The package also implements a series of recommendations offered in Ho, Imai, King, and Stuart (2007) <doi:10.1093 mpl013="" pan="">.</doi:10.1093>
LazyLoad yes
LazyData yes
License GPL (>= 2)
URL http://gking.harvard.edu/matchit
Repository CRAN Date/Publication 2017-02-22 14:13:05
R topics documented:

help.matchit	2
lalonde	2
match.data	3
matchit	4
user.prompt	7

1

> vignette(package = "MatchIt")
Vignettes in package 'MatchIt': linked
matchit MatchIt: Nonparametric Preprocessing for Parametric Causal Inference
(source, pdf)

Package 'optmatch'

July 31, 2015

Version 0.9-5

Date 2015-07-30

Title Functions for Optimal Matching

Description Provides routines for distance based bipartite matching to reduce covariate imbalance between treatment and control groups in observational studies. Routines are provided to generate distances from GLM models (propensity score matching) and formulas (Euclidean and Mahalanobis matching), stratified matching (exact matching), and calipers. Results of the fullmatch routine are guaranteed to provide minimum average within matched set distance.

Author Ben B. Hansen <ben.hansen@umich.edu>, Mark Fredrickson

<mark.m.fredrickson@gmail.com>, Josh Buckner, Josh Errickson, and Peter Solenberger, with embedded Fortran code due to Dimitri P. Bertsekas

<dimitrib@mit.edu> and Paul Tseng

Maintainer Mark M. Fredrickson <mark.m.fredrickson@gmail.com>

Depends R (>= 2.15.1), stats, methods, graphics, survival

LinkingTo Rcpp

Imports Rcpp, RItools, digest

Suggests boot, biglm, testthat, brglm, arm

License file LICENSE

URL http://www.r-project.org,

https://github.com/markmfredrickson/optmatch

Collate 'DenseMatrix.R' 'InfinitySparseMatrix.R'

'Ops.optmatch.dlist.R' 'Optmatch.R' 'abs.optmatch.dlist.R' 'boxplotMethods.R' 'caliper.R' 'deprecated.R' 'distUnion.R' 'exactMatch.R' 'feasible.R' 'fill.NAs.R' 'fmatch.R' 'fullmatch.R' 'makedist.R' 'match_on.R' 'matched.R' 'matched.distances.R' 'matchfailed.R' 'max.controls.cap.R' 'mdist.R' 'min.controls.cap.R' 'pairmatch.R' 'print.optmatch.R' 'print.optmatch.dlist.R' 'relaxinfo.R' 'scores.R' 'stratumStructure.R' 'subDivStrat.R' 'summary.optmatch.R' 'utilities.R' 'zzz.R' 'zzzDistanceSpecification.R'

	Stat 209
matchit package:MatchIt R Documentation	p. 7
<pre>redacted by drr MatchIt: Matching Software for Causal Inference Description: "matchit' is the main command of the package _MatchIt_, which parametric models for causal inference to work better by selecting well-matched subsets of the original treated and control groups. MatchIt implements a wide range of sophisticated matching methods, Matched data sets created by MatchIt can be entered easily in Zelig (<url: gking.harvard.edu="" http:="" zelig="">) for subsequent parametric analyses. Full documentation is available online at <url: http://gking.harvard.edu/matchit>, and help for specific commands is available through 'help.matchit'. Usage: matchit(formula, data, method = "nearest", distance = "logit", distance.options = list(), discard = "none", reestimate = FALSE,) Arguments: formula: This argument takes the usual syntax of R formula, 'tre x1 + x2', where 'treat' is a binary treatment indicator and 'x1' and 'x2' are the pre-treatment covariates. Both the treatment indicator and pre-treatment covariates us be contained in the same data frame, which is specified as 'data' (see below). All of the usual R syntax for formula works. For example, 'x1:x2' represents the first order interaction term between 'x1' and 'x2', and 'I(x1^2)' represents the square term of 'x1'. data: This argument specifies the data frame containing the variables cal "full"' (full matching), <u>CetCgoriceal varys</u> "full"' (full matching), <u>Ben Hansen optimalith (garutur</u> "genetic"' (genetic matching), historical method. "genetic"' (genetic matching), historical method. "genetic"' (genetic matching), historical method. "genetic"' (genetic matching), and <u>Ben Hansen optimalith</u>, ' "subclass"' (subclassification) are available. The default is '"nearest"'. Note that within each of these matchi MatchIt_ offers a variety of options. See <url: http://gking.harvard.edu/matchit/docs/Inputs.html> for the comple</url: </url: </url:></pre>	p. 2 enables at ~ <u>led in 'formula'</u> equity) nukes (2:1) ng methods, te list
Matching as Nonparametric Preprocessing for Improving Parametric Causal Inference,'' preprint available at <url: http://gking.harvard.edu/files/abs/matchp-abs.shtml> See Also: Please use 'help.matchit' to access the matchit reference manual. The complete document is available online at <url: gking.harvar<="" http:="" td=""><td>d.edu/matchit>.</td></url:></url: 	d.edu/matchit>.
<pre>match.data/ package:MatchIt R Documentation Output Matched Data Sets get the list of matches Description: 'match.data' outputs matched data sets from 'matchit()'. Usage: match.data <- match.data(object, group="all", distance = "distance", weights = "weights", subclass = "subclass") Arguments: object: The output object from {\tt matchit()}. This is an required input group: This argument specifies for which matched group the user wants to extract the data. Available options are '"all"' (all matched units), '"treat"' (matched units in the treatment group), and '"control"' (matched units in the control group). The default is '"all"'. Value: Returns a subset of the original data set sent to 'matchit()', with the matched units. The data set also contains the additional variables 'distance', 'weights', and 'subclass'. The variable 'distance' gives the estimated distance measure, and 'weights' gives the weights for each unit, generated in the matching procedure. The variable 'subclass' gives the subclass index for each unit (if applicable). See the <url: http://gking.harvard.edu/matchit/> for the complete documentation and type 'demo(match.data)' at the R prompt to see a demonstration of the code. :</url: </pre>	just pdfarhtml pdfarhtml manual

```
R version 3.4.4 (2018-03-15) -- "Someone to Lean On"
Copyright (C) 2018 The R Foundation for Statistical Computing
Platform: x86 64-w64-mingw32/x64 (64-bit)
> ## multiple failures downloading, 3.4.4 from Berkeley mirror 4/1/18
> install.packages("optmatch")
> install.packages("MatchIt")
> install.packages("lme4")
> install.packages("PSAgraphics")
> library(optmatch)
Loading required package: survival
The optmatch package has an academic license. Enter relaxinfo() for more information.
> library(MatchIt)
> library(lme4)
Loading required package: Matrix
> library(PSAgraphics)
Loading required package: rpart
> data(lalonde)
> dim(lalonde)
[1] 614 10
> attach(lalonde)
> tapply(re78, treat, median)
       0
               1
4975.505 4232.309
~
> tapplv(re78, treat, fivenum)
$`0`
[1]
       0.0000
               220.1813 4975.5050 11688.8200 25564.6700
$`1`
[1]
       0 0000
               485.2298 4232.3090 9642.9990 60307.9300
> t.test(re78 ~ treat)
       Welch Two Sample t-test
data: re78 by treat
t = 0.93773, df = 326.41, p-value = 0.3491
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -697.192 1967.244
sample estimates:
mean in group 0 mean in group 1
       6984 170
                      6349.144
```

Contents

1	Intr	oducti	on															3
	1.1	What	MATCHI	тDoes.						 								3
	1.2	Softwa	re Requi	rements .						 								3
	1.3	Install	ing Mat	снІт						 								4
	1.4	Loadir	ng MATC	нΙт						 								4
	1.5	Updat	ing Mat	снІт						 		•		•	 •	•		4
2	Stat	tistical	Overvie	ew														5
	2.1	Prepro	ocessing v	via Matchin	ng					 	• •	•		•	 •	•	•	6
	2.2	Check	ing Balan	nce						 	• •			•	 •	•	•	7
	2.3	Condu	icting An	alyses afte	r Matchin	ng .			•	 • •	• •	•	• •	•	 •	•		7
3	Use	r's Gu	ide to N	IatchIt														9
	3.1	Prepro	ocessing v	via Matchin	ng					 								9
		3.1.1	Quick O	verview .						 								9
		3.1.2	Example	es						 								9
			3.1.2.1	Exact Ma	atching .					 								10
			3.1.2.2	Subclassi	fication					 								10
			3.1.2.3	Nearest 1	Veighbor	Mate	hing	•		 								11
			3.1.2.4	Optimal	Matching	g				 								11
			3.1.2.5	Full Mat	ching					 								11
			3.1.2.6	Genetic I	Matching					 								12
			3.1.2.7	Coarsene	d Exact	Matcl	hing			 								12
	3.2	Check	ing Balan	nce						 								13
		3.2.1	Quick O	verview .						 								13
		3.2.2	Details							 								13
			3.2.2.1	The summ	mary() C	omm	and			 								13
			3.2.2.2	The plot	:() Comi	mand				 								14
	3.3	Condu	icting An	alyses afte	r Matchi	ng .				 								16
		3.3.1	Quick O	verview .						 								16
		3.3.2	Example	es						 								17

Journal of Statistical Software

May 2011, Volume 42, Issue 8.

http://www.jstatsoft.org/

MatchIt: Nonparametric Preprocessing for Parametric Causal Inference

Daniel E. Ho Stanford Law School

Kosuke Imai Princeton University

Gary King Harvard University Elizabeth A. Stuart Johns Hopkins University

Abstract

MatchIt implements the suggestions of Ho, Imai, King, and Stuart (2007) for improving parametric statistical models by preprocessing data with nonparametric matching methods. MatchIt implements a wide range of sophisticated matching methods, making it possible to greatly reduce the dependence of causal inferences on hard-to-justify, but commonly made, statistical modeling assumptions. The software also easily fits into existing research practices since, after preprocessing data with MatchIt, researchers can use whatever parametric model they would have used without MatchIt, but produce inferences with substantially more robustness and less sensitivity to modeling assumptions. MatchIt is an R program, and also works seamlessly with Zelig.

Keywords: matching methods, causal inference, balance, preprocessing, R.

1. Introduction

1.1. What MatchIt does

MatchIt implements the suggestions of Ho, Imai, King, and Stuart (2007) for improving parametric statistical models and reducing model dependence by preprocessing data with semi-parametric and non-parametric matching methods. After appropriately preprocessing data with MatchIt, researchers can use whatever parametric model and software they would have used without MatchIt, without other modification, and produce inferences that are more robust and less sensitive to modeling assumptions. MatchIt reduces the dependence of

Chapter 3

User's Guide to MatchIt

3.1 Preprocessing via Matching

3.1.1 Quick Overview

The main command matchit() implements the matching procedures. A general syntax is:

> m.out <- matchit(treat ~ x1 + x2, data = mydata)</pre>

where treat is the dichotomous treatment variable, and x1 and x2 are pre-treatment covariates, all of which are contained in the data frame mydata. The dependent variable (or variables) may be included in mydata for convenience but is never used by MATCHIT or included in the formula. This command creates the MATCHIT object called m.out. Name the output object to see a quick summary of the results:

> m.out

3.1.2 Examples

To run any of the examples below, you first must load the library and and data:

> library(MatchIt)

```
> data(lalonde)
```

Our example data set is a subset of the job training program analyzed in Lalonde (1986) and Dehejia and Wahba (1999). MATCHIT includes a subsample of the original data consisting of the National Supported Work Demonstration (NSW) treated group and the comparison sample from the Population Survey of Income Dynamics (PSID).¹ The variables in this data set include participation in the job training program (treat, which is equal to 1 if participated in the program, and 0 otherwise), age (age), years of education (educ), race

¹This data set, lalonde, was created using NSWRE74_TREATED.TXT and CPS3_CONTROLS.TXT from http://www.columbia.edu/~rd247/nswdata.

(black which is equal to 1 if black, and 0 otherwise; hispan which is equal to 1 if hispanic, and 0 otherwise), marital status (married, which is equal to 1 if married, 0 otherwise), high school degree (nodegree, which is equal to 1 if no degree, 0 otherwise), 1974 real earnings (re74), 1975 real earnings (re75), and the main outcome variable, 1978 real earnings (re78).

3.1.2.1 Exact Matching

The simplest version of matching is exact. This technique matches *each* treated unit to *all* possible control units with exactly the same values on all the covariates, forming subclasses such that within each subclass all units (treatment and control) have the same covariate values. Exact matching is implemented in MATCHIT using method = "exact". Exact matching will be done on all covariates included on the right-hand side of the formula specified in the MATCHIT call. There are no additional options for exact matching. (Exact restrictions on a subset of covariates can also be specified in nearest neighbor matching; see Section 3.1.2.3.) The following example can be run by typing demo(exact) at the R prompt,

3.1.2.2 Subclassification

When there are many covariates (or some covariates can take a large number of values), finding sufficient exact matches will often be impossible. The goal of subclassification is to form subclasses, such that in each the distribution (rather than the exact values) of covariates for the treated and control groups are as similar as possible. Various subclassification schemes exist, including the one based on a scalar distance measure such as the propensity score estimated using the distance option (see Section 4.1.0.2.2). Subclassification is implemented in MATCHIT using method = "subclass".

The following example script can be run by typing demo(subclass) at the R prompt,

The above syntax forms 6 subclasses, which is the default number of subclasses, based on a distance measure (the propensity score) estimated using logistic regression. By default, each subclass will have approximately the same number of treated units.

Subclassification may also be used in conjunction with nearest neighbor matching described below, by leaving the default of method = "nearest" but adding the option subclass. When you choose this option, MATCHIT selects matches using nearest neighbor matching, but after the nearest neighbor matches are chosen it places them into subclasses, and adds a variable to the output object indicating subclass membership.

3.1.2.3 Nearest Neighbor Matching

Nearest neighbor matching selects the r (default=1) best control matches for each individual in the treatment group (excluding those discarded using the discard option). Matching is done using a distance measure specified by the distance option (default=logit). Matches are chosen for each treated unit one at a time, with the order specified by the m.order command (default=largest to smallest). At each matching step we choose the control unit that is not yet matched but is closest to the treated unit on the distance measure.

Nearest neighbor matching is implemented in MATCHIT using the method = "nearest" option. The following example script can be run by typing demo(nearest):

3.1.2.4 **Optimal Matching**

The default nearest neighbor matching method in MATCHIT is "greedy" matching, where the closest control match for each treated unit is chosen one at a time, without trying to minimize a global distance measure. In contrast, "optimal" matching finds the matched samples with the smallest average absolute distance across all the matched pairs. Gu and Rosenbaum (1993) find that greedy and optimal matching approaches generally choose the same sets of controls for the overall matched samples, but optimal matching does a better job of minimizing the distance within each pair. In addition, optimal matching can be helpful when there are not many appropriate control matches for the treated units.

Optimal matching is performed with MATCHIT by setting method = "optimal", which automatically loads an add-on package called optmatch (Hansen 2004). The following example can also be run by typing demo(optimal) at the R prompt. We conduct 2:1 optimal ratio matching based on the propensity score from the logistic regression.

3.1.2.5 Full Matching

Full matching is a particular type of subclassification that forms the subclasses in an optimal way (Rosenbaum 2002; Hansen 2004). A fully matched sample is composed of matched sets, where each matched set contains one treated unit and one or more controls (or one control unit and one or more treated units). As with subclassification, the only units not placed into a subclass will be those discarded (if a discard option is specified) because they are outside the range of common support. Full matching is optimal in terms of minimizing a weighted average of the estimated distance measure between each treated subject and each control subject within each subclass.

Full matching can be performed with MATCHIT by setting method = "full". Just as with optimal matching, we use the optmatch package (Hansen 2004), which automatically

3.1.2.3 **Nearest Neighbor Matching**

Nearest neighbor matching selects the r (default=1) best control matches for each individual in the treatment group (excluding those discarded using the discard option). Matching is done using a distance measure specified by the distance option (default=logit). Matches are chosen for each treated unit one at a time, with the order specified by the m.order command (default=largest to smallest). At each matching step we choose the control unit that is not yet matched but is closest to the treated unit on the distance measure.

Nearest neighbor matching is implemented in MATCHIT using the method = "nearest" option. The following example script can be run by typing demo(nearest):

3.1.2.4 **Optimal Matching**

The default nearest neighbor matching method in MATCHIT is "greedy" matching, where the closest control match for each treated unit is chosen one at a time, without trying to minimize a global distance measure. In contrast, "optimal" matching finds the matched samples with the smallest average absolute distance across all the matched pairs. Gu and Rosenbaum (1993) find that greedy and optimal matching approaches generally choose the same sets of controls for the overall matched samples, but optimal matching does a better job of minimizing the distance within each pair. In addition, optimal matching can be helpful when there are not many appropriate control matches for the treated units.

Optimal matching is performed with MATCHIT by setting method = "optimal", which automatically loads an add-on package called optmatch (Hansen 2004). The following example can also be run by typing demo(optimal) at the R prompt. We conduct 2:1 optimal ratio matching based on the propensity score from the logistic regression.

3.1.2.5 Full Matching

Full matching is a particular type of subclassification that forms the subclasses in an optimal way (Rosenbaum 2002; Hansen 2004). A fully matched sample is composed of matched sets, where each matched set contains one treated unit and one or more controls (or one control unit and one or more treated units). As with subclassification, the only units not placed into a subclass will be those discarded (if a discard option is specified) because they are outside the range of common support. Full matching is optimal in terms of minimizing a weighted average of the estimated distance measure between each treated subject and each control subject within each subclass.

Full matching can be performed with MATCHIT by setting method = "full". Just as with optimal matching, we use the optmatch package (Hansen 2004), which automatically

loads when needed. The following example with full matching (using the default propensity score based on logistic regression) can also be run by typing demo(full) at the R prompt:

3.1.2.6 Genetic Matching

Genetic matching automates the process of finding a good matching solution (Diamond and Sekhon 2005). The idea is to use a genetic search algorithm to find a set of weights for each covariate such that the a version of optimal balance is achieved after matching. As currently implemented, matching is done with replacement using the matching method of Abadie and Imbens (2007) and balance is determined by two univariate tests, paired t-tests for dichotomous variables and a Kolmogorov-Smirnov test for multinomial and continuous variables, but these options can be changed.

Genetic matching can be performed with MATCHIT by setting method = "genetic", which automatically loads the Matching (?) package. The following example of genetic matching (using the estimated propensity score based on logistic regression as one of the covariates) can also be run by typing demo(genetic):

```
> m.out <- matchit(treat ~ age + educ + black + hispan + married + nodegree +
re74 + re75, data = lalonde, method = "genetic")
```

3.1.2.7 Coarsened Exact Matching

Coarsened Exact Matching (CEM) is a Monotonoic Imbalance Bounding (MIB) matching method — which means that the balance between the treated and control groups is chosen by the user ex ante rather than discovered through the usual laborious process of checking after the fact and repeatedly reestimating, and so that adjusting the imbalance on one variable has no effect on the maximum imbalance of any other. CEM also strictly bounds through ex ante user choice both the degree of model dependence and the average treatment effect estimation error, eliminates the need for a separate procedure to restrict data to common empirical support, meets the congruence principle, is robust to measurement error, works well with multiple imputation methods for missing data, and is extremely fast computationally even with very large data sets. CEM also works well for multicategory treatments, determining blocks in experimental designs, and evaluating extreme counterfactuals (Iacus et al. 2008b).

CEM can be performed with MATCHIT by setting method = "cem", which automatically loads the cem package. The following examples of CEM (with automatic coarsening) can also be run by typing demo(cem):

```
m.out <- matchit(treat ~ age + educ + black + hispan + married + nodegree
+ re74 + re75, data = lalonde, method = "cem")
```

3.2 Checking Balance

3.2.1 Quick Overview

To check balance, use summary(m.out) for numerical summaries and plot(m.out) for graphical summaries.

3.2.2 Details

3.2.2.1 (The summary() Command

The summary() command gives measures of the balance between the treated and control groups in the full (original) data set, and then in the matched data set. If the matching worked well, the measures of balance should be smaller in the matched data set (smaller values of the measures indicate better balance).

The summary() output for subclassification is the same as that for other types of matching, except that the balance statistics are shown separately for each subclass, and the overall balance in the matched samples is calculated by aggregating across the subclasses, where each subclass is weighted by the number of units in the subclass. For exact matching, the covariate values within each subclass are guaranteed to be the same, and so the measures of balance are not output for exact matching; only the sample sizes in each subclass are shown.

- Balance statistics: The statistics the summary() command provides include means, the original control group standard deviation (where applicable), mean differences, standardized mean differences, and (median, mean and maximum) Quantile-Quantile (Q-Q) plot differences. In addition, the summary() command will report (a) the matched call, (b) how many units were matched, unmatched, or discarded due to the discard option (described below), and (c) the percent improvement in balance for each of the balance measures, defined as 100((|a| |b|)/|a|), where a is the balance before and b is the balance after matching. For each set of units (original and matched data sets, with weights used as appropriate in the matched data sets), the following statistics are provided:
 - 1. "Means Treated" and "Means Control" show the weighted means in the treated and control groups
 - 2. "SD Control" is the standard deviation calculated in the control group (where applicable)
 - 3. "Mean Diff" is the difference in means between the groups
 - 4. The final three columns of the summary output give summary statistics of a Q-Q plot (see below for more information on these plots). Those columns give the median, mean, and maximum distance between the two empirical quantile functions (treated and control groups). Values greater than 0 indicate deviations between the groups in some part of the empirical distributions. The plots of the

Costs of nuclear plants

A small comparative study from a classic text

Details

x is a formula of the form $Z \sim X1 + X2$, where Z is indicates treatment or control status, and X1 and X2 are variables can be converted to factors. Any additional arguments are passed to model.frame (e.g., a data argument containing Z, X1, and X2).

The the arguments scores and width must be passed together. The function will apply the caliper implied by the scores and the width while also adding in blocking factors.

Value

A factor grouping units, suitable for exactMatch.

nuclearplants

Nuclear Power Station Construction Data

Description

The nuclearplants data frame has 32 rows and 11 columns.

The data relate to the construction of 32 light water reactor (LWR) plants constructed in the U.S.A in the late 1960's and early 1970's. The data was collected with the aim of predicting the cost of construction of further LWR plants. 6 of the power plants had partial turnkey guarantees and it is possible that, for these plants, some manufacturers' subsidies may be hidden in the quoted capital costs.

Usage

nuclearplants

Format

This data frame contains the following columns:

- cost The capital cost of construction in millions of dollars adjusted to 1976 base.
- date The date on which the construction permit was issued. The data are measured in years since January 1 1990 to the nearest month.
- t1 The time between application for and issue of the construction permit.
- t2 The time between issue of operating license and construction permit.
- cap The net capacity of the power plant (MWe).
- pr A binary variable where 1 indicates the prior existence of a LWR plant at the same site.
- ne A binary variable where 1 indicates that the plant was constructed in the north-east region of the U.S.A.
- ct A binary variable where 1 indicates the use of a cooling tower in the plant.
- bw A binary variable where 1 indicates that the nuclear steam supply system was manufactured by Babcock-Wilcox.

cum.n The cumulative number of power plants constructed by each architect-engineer.

pt A binary variable where 1 indicates those plants with partial turnkey guarantees.

see handout

Existing site								
	date capacity							
Α	2.3	660						
В	3.0	660						
С	3.4	420						
D	3.4	130						
Е	3.9	650						
F	5.9	430						
G	5.1	420						

	New site				
	date	capacity			
Н	3.6	290			
I	2.3	660			
J	3.0	660			
K	2.9	110			
L	3.2	420			
М	3.4	60			
N	3.3	390			
0	3.6	160			
Р	3.8	390			
Q	3.4	130			
R	3.9	650			
S	3.9	450			
Т	3.4	380			
U	4.5	440			
V	4.2	690			
W	3.8	510			
Х	4.7	390			
Y	5.4	140			
Z	6.1	730			

"date" is date of construction, in years after 1965; "capacity" is net capacity of the power plant, in MWe above 400.

Vol. 7/2, October 2007

18

Optmatch: Flexible, Optimal Matching for Observational Studies

Ben B. Hansen

Observational studies compare subjects who received a specified treatment to others who did not, without controlling assignment to treatment and comparison groups. When the groups differ at baseline in ways that are relevant to the outcome, the study has to adjust for the differences. An old and particularly direct method of making these adjustments is to match treated subjects to controls who are similar in terms of their pretreatment characteristics, then conduct an outcome analysis conditioning upon the matched sets. Adjustments of this type enjoy properties of robustness (Rubin, 1979) and transparency not shared with purely model-based adjustments, such as covariance adjustment without matching or stratification; and with the introduction of propensity scores to matching (Rosenbaum and Rubin, 1985), the approach was shown to be more broadly applicable than was previously thought. Arguably, the reach of techniques based on matching now exceeds that of purely model-based adjustment (Hansen, 2004).

To achieve these benefits, matched adjustment requires the analyst to articulate a distinction between desirable and undesirable potential matches, and then to match treated and control subjects in such a way as to favor the more desirable pairings. Propensity scoring fits under the first of these tasks, as do the construction of Mahalanobis matching metrics (Rosenbaum and Rubin, 1985), prognostic scoring (Hansen, 2006b), and the distance metric optimization of Diamond and Sekhon (2006). The second task, matching itself, is less statistical in nature, but doing it well can substantially improve the power and robustness of matched inference (Hansen and Klopfer, 2006; Hansen, 2004). The main purpose of **optmatch** is to relieve the analyst of responsibility for this important, if potentially tedious, undertaking, freeing attention for other aspects of the analysis. Given discrepancies between each treatment and control subject that might potentially be matched, **optmatch** places them into non-overlapping matched sets, in the process solving the discrete optimization problems needed to make sums of matched discrepancies as small as possible; after this, the analysis can proceed using permutation inference (Rosenbaum, 2002; Hothorn et al., 2006; Bowers and Hansen, 2006), conditional inference (Breslow and Day, 1980; Cox and Snell, 1989; Hansen, 2004; Lumley and Therneau, 2006), approximately conditional inference (Pierce and Peters, 1992; Brazzale, 2005; Brazzale et al., 2006), or multilevel models (Smith, 1997; Raudenbush and Bryk, 2002; Gelman and Hill, 2006).

Optimal matching of two groups

To illustrate the meaning of optimal matching, consider Cox and Snell's (1981, p.81) study of costs of nuclear power. Of 26 light water reactor plants constructed in the U.S. between 1967 and 1972, seven had been built on the site of existing plants. The problem is to estimate the cost benefit (or penalty) of building on an existing site as opposed to a new one. A matched analysis seeks to adjust for background characteristics determinative of cost, such as the date of construction and the capacity of the plant, by linking similar refurbished and new plants: plants of about the same capacity and constructed at about the same time, for example. To highlight the analogy with intervention studies, I refer to existing-site plants as "treatments" and new-site plants as "controls."

Consider the problem of arranging the plants in disjoint triples, each containing one treatment and two controls, placing each treatment and 14 of the 19 controls into some matched triple or another. A straightforward way to create such a match is to move down the list of treatments, pairing each to the two most similar controls that have not yet been matched; this is *nearest-available matching*. Figure 1 shows the 26 plants, their capacities and dates of construction, and a 1 : 2 matching constructed in this way. First A was matched to I and J, then B to L and N, and so forth. This example is discussed by Rosenbaum (2002, ch.10).

		Existir	ıg site		New	site
-		date	capacity		date	capacity
-		uute	cupacity	Н	3.6	290
	А	2.3	660 —	I	2.3	660
	В	3.0	660 🔪	J	3.0	660
	С	3.4	420	K	2.9	110
	D	2.4	120		3.2	420
	υ	3.4	130 77		3.4	60
	E	3.9	650	N	3.3	390
	r	5.0	120	$\langle 0 \rangle$	3.6	160
	г	5.9	430	\sqrt{P}	3.8	390
	G	5.1	420) Q	3.4	130
-			//	R	3.9	650
				\\s	3.9	450
			\	Т / /	3.4	380
"d	lato	" is date	of construc-	U	4.5	440
U	ate	15 uate	of construc-	V V	4.2	690
tic	on,	in year	s after 1965;	\\\w	3.8	510
"	202	city" is	net canac-	\\x	4.7	390
C	apa	icity is	net capac-	\Υ	5.4	140
ity	7 of	the pow	wer plant, in	Z	6.1	730
Μ	We	above 4	00.			

Figure 1: 1:2 matching by a nearest-available algorithm.

How might this process be improved? To complete step *i*, the nearest-available algorithm requires

Package 'optmatch'

July 31, 2015

Version 0.9-5

Date 2015-07-30

Title Functions for Optimal Matching

Description Provides routines for distance based bipartite matching to reduce covariate imbalance between treatment and control groups in observational studies. Routines are provided to generate distances from GLM models (propensity score matching) and formulas (Euclidean and Mahalanobis matching), stratified matching (exact matching), and calipers. Results of the fullmatch routine are guaranteed to provide minimum average within matched set distance.

Author Ben B. Hansen <ben.hansen@umich.edu>, Mark Fredrickson

<mark.m.fredrickson@gmail.com>, Josh Buckner, Josh Errickson, and Peter Solenberger, with embedded Fortran code due to Dimitri P. Bertsekas

<dimitrib@mit.edu> and Paul Tseng

Maintainer Mark M. Fredrickson <mark.m.fredrickson@gmail.com>

Depends R (>= 2.15.1), stats, methods, graphics, survival

LinkingTo Rcpp

Imports Rcpp, RItools, digest

Suggests boot, biglm, testthat, brglm, arm

License file LICENSE

URL http://www.r-project.org,

https://github.com/markmfredrickson/optmatch

Collate 'DenseMatrix.R' 'InfinitySparseMatrix.R'

'Ops.optmatch.dlist.R' 'Optmatch.R' 'abs.optmatch.dlist.R' 'boxplotMethods.R' 'caliper.R' 'deprecated.R' 'distUnion.R' 'exactMatch.R' 'feasible.R' 'fill.NAs.R' 'fmatch.R' 'fullmatch.R' 'makedist.R' 'match_on.R' 'matched.R' 'matched.distances.R' 'matchfailed.R' 'max.controls.cap.R' 'mdist.R' 'min.controls.cap.R' 'pairmatch.R' 'print.optmatch.R' 'print.optmatch.dlist.R' 'relaxinfo.R' 'scores.R' 'stratumStructure.R' 'subDivStrat.R' 'summary.optmatch.R' 'utilities.R' 'zzz.R' 'zzzDistanceSpecification.R'

Details

x is a formula of the form $Z \sim X1 + X2$, where Z is indicates treatment or control status, and X1 and X2 are variables can be converted to factors. Any additional arguments are passed to model.frame (e.g., a data argument containing Z, X1, and X2).

The the arguments scores and width must be passed together. The function will apply the caliper implied by the scores and the width while also adding in blocking factors.

Value

A factor grouping units, suitable for exactMatch.

nuclearplants

Nuclear Power Station Construction Data

Description

The nuclearplants data frame has 32 rows and 11 columns.

The data relate to the construction of 32 light water reactor (LWR) plants constructed in the U.S.A in the late 1960's and early 1970's. The data was collected with the aim of predicting the cost of construction of further LWR plants. 6 of the power plants had partial turnkey guarantees and it is possible that, for these plants, some manufacturers' subsidies may be hidden in the quoted capital costs.

Usage

nuclearplants

Format

This data frame contains the following columns:

- cost The capital cost of construction in millions of dollars adjusted to 1976 base.
- date The date on which the construction permit was issued. The data are measured in years since January 1 1990 to the nearest month.
- t1 The time between application for and issue of the construction permit.
- t2 The time between issue of operating license and construction permit.
- cap The net capacity of the power plant (MWe).
- pr A binary variable where 1 indicates the prior existence of a LWR plant at the same site.
- ne A binary variable where 1 indicates that the plant was constructed in the north-east region of the U.S.A.
- ct A binary variable where 1 indicates the use of a cooling tower in the plant.
- bw A binary variable where 1 indicates that the nuclear steam supply system was manufactured by Babcock-Wilcox.

cum.n The cumulative number of power plants constructed by each architect-engineer.

pt A binary variable where 1 indicates those plants with partial turnkey guarantees.

Existing site			New site				
		date	capacity			date	capacity
	٨	2.2	660		Н	3.6	290
	~	2.5	000 —		- 1	2.3	660
	В	3.0	660		- J	3.0	660
	С	3.4	420		Κ	2.9	110
	П	34	130		L	3.2	420
	-	0.1	050		М	3.4	60
	E	3.9	650		Ν	3.3	390
	F	5.9	430		0	3.6	160
	G	5.1	420		Ρ	3.8	390
	-				Q	3.4	130
					R	3.9	650
					S	3.9	450
Exar	nple	: 1:2	matching by	а	Т	3.4	380
tradit	Hone		dy algorithm		U	4.5	440
uau	liulia	al, gree	uy algorithin		V	12	600

"date" is date of construction, in years after 1965; "capacity" is net capacity of the power plant, in MWe above 400.

0	0.0	100
Ρ	3.8	390
Q	3.4	130
R	3.9	650
S	3.9	450
Т	3.4	380
U	4.5	440
V	4.2	690
W	3.8	510
Х	4.7	390
Y	5.4	140
Z	6.1	730

	E	xistir	ng site			New	site
		date	capacity	•		date	capacity
	\	23	033	•	Н	3.6	290
		2.5	000 -		_	2.3	660
E	3	3.0	660 👡		— J	3.0	660
(С	3.4	420	\sim	Κ	2.9	110
Г	ר	34	130		∕L	3.2	420
	_	0.4	100		Μ	3.4	60
Ŀ	=	3.9	650		<u> </u>	3.3	390
F	=	5.9	430		0	3.6	160
(- F	51	420		Ρ	3.8	390
_	<u> </u>	0.1	.20		Q	3.4	130
					R	3.9	650
					S	3.9	450
amp	ole:	1:2	matching	Т	3.4	380	
				1	U	4.5	440

Exa traditional, greedy algorithm.

"date" is date of construction, in years after 1965; "capacity" is net capacity of the power plant, in MWe above 400.

690

510

390

140

730

4.2

3.8

4.7

5.4

6.1

V

W

Х

Υ

Ζ

	Existing site				New site		
		date	capacity			date	capacity
	٨	2.2	660		Н	3.6	290
	<u> </u>	2.5	000 —		_	2.3	660
	В	3.0	660 🔪		— J	3.0	660
	С	3.4	420	\sim	Κ	2.9	110
	D	34	130	$\langle \ \rangle$	~L	3.2	420
	-	0.1	050	\sim	М	3.4	60
	Е	3.9	650	$\langle \rangle$	<u> </u>	3.3	390
	F	5.9	430		0	3.6	160
	G	5.1	420		P	3.8	390
	-	•••			Q	3.4	130
					R	3.9	650
				\langle	S	3.9	450
Exar	nple	: 1:2	matching by	/ a	`T	3.4	380
tradi	Hone		dy algorithm		U	4.5	440
liaui	liona	al, gree	ay algorithin	.	V	4.2	690
					W	3.8	510
"date	' is	date of	construction	in	Х	4.7	390
	.0		conceautori,		Y	5.4	140

Ζ

6.1

years after 1965; "capacity" is net capacity of the power plant, in MWe above 400.

730

	Existing site				New site		
		date	capacity	_		date	capacity
	Λ	23	033		Н	3.6	290
	~	2.0	000		-	2.3	660
	В	3.0	660		- J	3.0	660
	С	3.4	420		Κ	2.9	110
	D	34	130		- L	3.2	420
	-	0.1	050	\frown	- M	3.4	60
	E	3.9	650	\sim $^{\prime}$	- N	3.3	390
	F	5.9	430		0	3.6	160
	G	5.1	420		P	3.8	390
		••••			Q	3.4	130
					R	3.9	650
					S	3.9	450
Exar	nple	: 1:2	matching by	a	١T	3.4	380
tradi	tions		dy algorithm		U	4.5	440
liaui	liona	ai, gree	ay algorithm.	•	V	4.2	690
					W	3.8	510
"date	' is	date of	construction	in	Х	4.7	390
	.0				Υ	5.4	140

Ζ

6.1

years after 1965; "capacity" is net ca-

pacity of the power plant, in MWe

above 400.

◆ロト ◆御 ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ● の久で

730

	Existing site			New site			
-		date	capacity			date	capacity
-	Λ	2.3	033		Н	3.6	290
	<u> </u>	2.5	000 —		- 1	2.3	660
	В	3.0	660 🔪		– J	3.0	660
	С	3.4	420		K	2.9	110
	D	34	130		~ L	3.2	420
	-	0.4	050	\sim	– M	3.4	60
	E	3.9	050	\sim \sim	<u> </u>	3.3	390
	F	5.9	430		0	3.6	160
	G	5.1	420	H),	P	3.8	390
	-				∖Q	3.4	130
					∖R	3.9	650
					∖S	3.9	450
Exar	nple	: 1:2	matching by	à	`T ∕	3.4	380
tradit	lione		du algorithm		U	4.5	440
traun	ION	al, gree	ay algorithm.		V	4.2	690
					W	3.8	510
"date" is date of construction in						4.7	390
auto	.0				Y	5.4	140
years after 1965; "capacity" is net ca-						6.1	730

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

pacity of the power plant, in MWe

above 400.

	Existing site				New site		
		date	capacity		date	capacity	
	٨	2.2	660	H	3.6	290	
	A	2.5	000 —		2.3	660	
	В	3.0	660 🔪	J	3.0	660	
	С	3.4	420	К	2.9	110	
	D	34	130	L	3.2	420	
	_	20	650	<u> </u>	1 3.4	60	
	<u> </u>	3.9	050	<u> </u>	3.3	390	
	F	5.9	430	/// C) 3.6	160	
	G	5.1	420	/// / P	3.8	390	
	-) // C	3.4	130	
			\	R	3.9	650	
				\ \ \\ S	3.9	450	
Exar	nple	: 1:2 (matching by	а 🔪 🔨 т	3.4	380	
tradit	lione		du algorithm	\ \U	4.5	440	
liau	10116	al, gree	uy algorithin.	V V	4.2	690	
				<u> </u>	/ 3.8	510	
"date"	' is	date of	n `x	4.7	390		
					5.4	140	
years	atter	1965; "0	apacity" is net ca	a- Z	6.1	730	
pacity of the power plant, in MWe							

above 400.

	Existing site				New site		
		date	capacity			date	capacity
	٨	2.2	660		Н	3.6	290
	A	2.3	000 —		— I	2.3	660
	В	3.0	660 🔍		— J	3.0	660
	С	3.4	420		К	2.9	110
	D	34	130		~ L	3.2	420
	Ē	20	650	$\overline{\ }$	— M	3.4	60
	<u> </u>	3.9	000	//	∕ N	3.3	390
	F	5.9	430		0	3.6	160
	G	5.1	420		P	3.8	390
	-			/ M/	∕ Q	3.4	130
				γ / ℓ	∕R	3.9	650
				/	S	3.9	450
Exar	nple	: 1:2	matching by	à 🔪 🔪	`T	3.4	380
tradit	Hone		du algorithm		∕ U	4.5	440
liau	liona	al, gree	ay algorithin	r. ///	V	4.2	690
					W	3.8	510
"date" is date of construction. in						4.7	390
					Ύ	5.4	140
years	anter	1905; 0	apacity is net	ca-	Ζ	6.1	730
pacity of the power plant, in MWe							

above 400.
		Existin	ig site	_		New	site
		date	capacity			date	capacity
	۸	2.2	660		Н	3.6	290
	A	2.5	000		-1	2.3	660
	В	3.0	660 🛁		– J	3.0	660
	С	3.4	420 🥿		K	2.9	110
	D	34	130 🚽		L	3.2	420
	Ē	20	650	\mathcal{A}	– M	3.4	60
		3.9	050		N	3.3	390
	F	5.9	430	/MM/	0	3.6	160
	G	5.1	420	V MV /	P	3.8	390
	-			M ///	Q	3.4	130
					R	3.9	650
					S	3.9	450
Optir	nal [•]	vs. Gre	edv match	ning 🔪 🐧	T	3.4	380
			· · · · , · · · · · · ·		U	4.5	440
					V	4.2	690
By evaluating potential matches all					W	3.8	510
together rather than sequentially on-					X	4.7	390
					Y	5.4	140
timal	mato	hing (<mark>bl</mark>	ue lines) rec	luces	١Z	6.1	730
the su	the sum of distances from 82 to 63.						

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ のへぐ

(Match distance is to "optimal matching" as statistical model is to "maximum likelihood.")

Weeks 8 after installing (Lab4) 2 > library(MatchIt) Ben Hansen matching Exs using MatchIt wrapper Loading required package: MASS Stat 209 Loading required package: optmatch · · · Loading required package: Matching ## MatchIt (Version 2.3-1, built: 2007-10-11) Dease refer to http://gking.harvard.edu/matchit for full documentation data(nuclear) # get from "boot"; [16/2/9(boot) > library(boot) > nuclear > data(nuclear) cost date t1 t2 cap pr ne ct bw cum.n pt Kig duia ingert 460.1 68.58 14 46 687 0 1 0 0 1 14 0 set 453.0 67.33 10 73 1065 0 Ω 0 2 1 1 0 443.2 67.33 10 85 1065 0 1 0 0 3 1 1 Aucleorplants 4 652.3 68.00 11 67 1065 0 1 1 0 12 0 5 642.2 68.00 11 78 1065 1 1 1 0 12 0 library(optmatch) 24 608.8 70.08 19 58 821 1 0 0 0 3 0 > data(nuclearplants) 29 284.9 67.83 12 63 886 0 0 0 1 11 1 32 270.7 67.83 7 80 886 1 0 0 1 11 1 > bennuke = subset(nuclear, subset = pt == 0, select = c(date,cap,pr)) > bennuke\$cap = bennuke\$cap - 400 > bennuke\$date = bennuke\$date - 65 prens form to myst 1317 cx > bennuke subjet and date cap pr date cap pr 3.58 287 14 3.92 650 1 0 0 15 3.92 450 2.33 665 2 0 0 3 2.33 665 16 3.42 378 1 0 3.00 665 17 4.50 445 4 0 0 5 3.00 665 18 3.42 130 1 1 6 2.92 114 19 4.17 690 7 prior plants for matching 7 3.17 422 0 20 3.92 650 8 3.42 57 0 21 3.75 513 0 9 3.42 422 1 22 5.92 428 1 10 3.33 392 0 23 4.67 386 0 24 5.08 421 11 3.58 160 0 1 25 5.42 138 12 3.75 390 0 0 2 to 1 mater 13 3.42 130 26 6.08 730 0 0 > mopt2= matchit(pr ~ date + cap, data = bennuke, method = "optimal", ratio = 2) lots of options full, mahal > summary(mopt2) Percent Balance Improvement: diggnostics, plots Laby for bylance see Laby Matchitt docs p.2 hundret Control Treated Sample sizes: All 19 7 see Gunder Matched 14 7 p.R Unmatched 5 0 Discarded 0 E reate matching data, then list > #subclass gives you the matching > mopt2.data > mopt2.data = match.data(mopt2) 500 cluss two matches date cap pr distance weights subclass 2.33 665 0.3409 1-2 0 1 3 2.33 665 0.3409 1 1 1-4 3.00 665 0 0.3513 1 2 5 3.00 665 1 0.3513 2 1 6 2.92 114 0 0.1514 4 1 7 3.17 422 0 0.2518 1 6 9 3.42 422 3 1 0.2551 1 10 3.33 392 0 0.2427 1 3 12 3.75 390 0 0.2473 1 3 13 3.42 130 0 0.1601 1 4 14 3.92 650 0 0.3590 1 2 15 3.92 450 0 0.2727 1 7. default distance 17 4.50 445 0 0.2787 1 6 18 3.42 130 1 0.1601 1 4 fault distance is score measure is score propensity demonstrated demonstrated "more nulse" 19 4.17 690 5 0 0.3817 1 20 3.92 650 1 5 1 0.3590 21 3.75 513 0 0.2960 1 1 22 5.92 428 1 0.2917 1 6 23 4.67 386 0 0.2578 1 24 5.08 421 1 1 0.2770 26 6.08 730 0 0.4328 1 > #this corresponds to hansen slide 45

Check Balance 2:1 match handout

```
> mopt2= matchit(pr ~ date + cap, data = bennuke, method = "optimal", ratio = 2)
    Installing package(s) into 'C:/Users/rag/Documents/R/win-library/2.14'
    (as 'lib' is unspecified)
    trying URL 'http://cran.cnr.Berkeley.edu/bin/windows/contrib/2.14/optmatch 0.7-1.zip'
    Content type 'application/zip' length 330389 bytes (322 Kb)
    opened URL
    downloaded 322 Kb
    package 'optmatch' successfully unpacked and MD5 sums checked
    The downloaded packages are in
            C:\Users\raq\AppData\Local\Temp\RtmpWi648r\downloaded packages
    Loading required package: optmatch
    > summary(mopt2)
    Call:
    matchit(formula = pr ~ date + cap, data = bennuke, method = "optimal",
        ratio = 2)
    Summary of balance for all data:
propensity
             Means Treated Means Control SD Control Mean Diff eQQ Med eQQ Mean
                                                                                 eOO Max
                                                       0.0294
    distance
                    0.2907
                                  0.2613
                                             0.0832
                                                               0.0398
                                                                         0.0454
                                                                                  0.0852
    date
                                                                0.1600
                                                                         0.1529
                    3.8700
                                  3.8079
                                             0.8807
                                                       0.0621
                                                                                  0.5800
    cap
                  483.0000
                                403.2632
                                           214.1816
                                                      79.7368 65.0000 100.1429 283.0000
    Summary of balance for matched data:
             Means Treated Means Control SD Control Mean Diff eQQ Med eQQ Mean eQQ Max
    distance
                    0.2907
                                  0.2874
                                             0.0799
                                                       0.0033
                                                                0.019
                                                                        0.0263
                                                                                  0.0738
    date
                    3.8700
                                  3.7807
                                             0.9177
                                                       0.0893
                                                                0.090
                                                                         0.2129
                                                                                  0.9100
                  483.0000
                                474.4286
                                           194.3885
                                                       8.5714
                                                               30.000 42.8571 137.0000
    cap
    Percent Balance Improvement:
             Mean Diff. eQQ Med eQQ Mean eQQ Max
    distance
                88.8018 52.3558 42.1473 13.3177
    date
               -43.7651 43.7500 -39.2523 -56.8966
                89.2504 53.8462 57.2040 51.5901
    cap
    Sample sizes:
              Control Treated
    A11
                   19
                            7
    Matched
                   14
                            7
    Unmatched
                    5
                            0
    Discarded
                            0
                    0
```

more nuke matching week 8 State 209 R version 2.8.1 (2008-12-22) cf Lab 4 > install.packages("MatchIt") > data(nuclear) > bennuke = subset(nuclear, subset = pt == 0, select = c(date,cap,pr)) sce and handout > bennuke\$cap = bennuke\$cap - 400 > bennuke\$date = bennuke\$date - 65 > attach (bennuke) > mopt1= matchit(pr ~ date + cap, data = bennuke, method = "optimal") optimal match 1:1 > summary(mopt1) Call. matchit(formula = pr ~ date + cap, data = bennuke, method = "optimal") Summary of balance for all data: Means Treated Means Control SD Control Mean Diff eQQ Med eQQ Mean eQQ Max Betwee and 0.04 0.045 0.085 0.083 0.029 0.291 0.261 distance 0.16 0.580 3.808 0.881 0.062 0.153 3.870 date 79.737 65.00 100.143 283.000 214.182 cap 483.000 403.263 After and Matching Summary of balance for matched data: Means Treated Means Control SD Control Mean Diff eQQ Med eQQ Mean eQQ Max 0 0.001 0 004 0.291 0.070 -0.001 0.292 distance 0 0.309 1,250 0.214 date 3.870 3.656 0.823 may be get betwe bulance, may be get betwe not compared to ratio 85.000 195.677 -10.4290 20.429 493.429 483.000 cap Percent Balance Improvement: Mean Diff. eQQ Med eQQ Mean eQQ Max 97.29 94.91 95.81 100 distance -101.87 -115.52 -245.04 100 date 100 79.60 69 97 86.92 cap Sample sizes: Control Treated 19 A11 - only asked for 1:1 ratio=1 7 7 Matched 0 Unmatched 12 0 Discarded "subclass" tells us the matches > mopt.data = match.data(mopt1) creute a matched data set > mopt.data date cap pr distance weights subclass ID 2 2.33 665 0 0.3409 1 0.3409 1 1 2.33 665 1 3 2 1 4 3.00 665 0 0.3513 2 5 3.00 665 1 0.3513 1 3.42 422 0.2551 9 1 1 13 3.42 130 0.1601 1 0 default distance is 14 3.92 650 0 0.3590 1 5 7 17 4.50 445 0.2787 1 0 propensity score 4 0.1601 1 18 3.42 130 1 5 0.3590 1 20 3.92 650 1 21 3.75 513 0 0.2960 1 6 6 0.2917 1 22 5.92 428 1 3 23 4.67 386 0 0.2578 1 create the propensity 7 24 5.08 421 1 1 0.2770 > glmnuke = glm(pr ~ date + cap, family = binomial, data = bennuke) Score by hand > propen = fitted(glmnuke) > propen 11 1 0.2089 0.3409 a in most.data **(14)** 15 16 **(17) (18)** 19 **(20) (21) (23) (23) (24)** 25 26 0.3590 0.2727 0.2387 0.2787 0.1601 0.3817 0.3590 0.2960 0.2917 0.2578 0.2770 0.1819 0.4328 > attach(mopt.data) > names(mopt.data) "distance" "weights" "subclass" you can do your own comparisons "cap" "pr" [1] "date" > tapply(distance, list(pr,subclass), mean) 1 2 3 4 5 6 0 0.3409 0.3513 0.2578 0.1601 0.3590 0.2960 0.2787 1 0.3409 0.3513 0.2551 0.1601 0.3590 0.2917 0.2770 of balance after > tapply(cap, list(pr,subclass), mean) 1 2 3 4 5 6 7 0 665 665 386 130 650 513 445 cfhouc 1 665 665 422 130 650 428 421 Aspirince matching > tapply(date, list(pr,subclass), mean) 12 3 4 5 6 7 10% effect 0 2.33 3 4.67 3.42 3.92 3.75 4.50 1 2.33 3 3.42 3.42 3.92 5.92 5.08

	Week 8		p. Z	Stat 209
<pre>> mnearl= matchit(pr ~)</pre>	date + cap, data	= bennuke, method = "n	earest")	
> summary(mnearl)		compare with ne	eavest neigh.	bor 1!1
Call: matchit(formula = pr ~	date + cap, data	= bennuke, method = "n	earest")	matching
Summary of balance for Means Treated distance 0.291 date 3.870 cap 483.000	all data: Means Control SD 0.261 3.808 403.263	Control Mean Diff eQQ 0.083 0.029 0 0.881 0.062 0 214.182 79.737 65	Med eQQ Mean eQQ M .04 0.045 0.0 .16 0.153 0.5 .00 100.143 283.0	Max 085 080 000
Summary of balance for Means Treated distance 0.291 date 3.870 cap 483.000	matched data: Means Control SD 0.292 3.656 493.429	Control Mean Diff eQQ 0.070 -0.001 0.823 0.214 195.677 -10.429	Med eQQ Mean eQQ M 0 0.001 0.0 0 0.309 1.2 0 20.429 85.0	Max 004 250 000
Percent Balance Improve Mean Diff. eQG distance 95.81 date -245.04 cap 86.92	ement: Q Med eQQ Mean eQQ 100 97.29 100 -101.87 -1 100 79.60	Q Max 94.91 15.52 69.97		
Sample sizes: Control Treat All 19 Matched 7 Unmatched 12 Discarded 0 > mnearl.data = match.co > mnearl.data date cap pr distance 2 2.33 665 0 0.340 3 2.33 665 1 0.340 4 3.00 665 0 0.351 9 3.42 422 1 0.255 13 3.42 130 0 0.160 14 3.92 650 0 0.359 17 4.50 445 0 0.278 18 3.42 130 1 0.160 20 3.92 650 1 0.359 21 3.75 513 0 0.296	ted 7 7 0 0 data(mnear1) e weights 9 1 9 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1	mutched duta sh Same result as optimal for this small ex	amp)c.	

Rubin An Int Med Cochransex, matching on Age

Table 1. Comparison of Mortality Rates for Three Smoking Groups in Three Databases*

Variabla	0	anadian Stu	dy	Unit	ed Kingdom	Study	United States Study		
Valiable	Nonsmokers	Cigarette Smokers	Cigar and Pipe Smokers	Nonsmokers	Cigarette Smokers	Cigar and Pipe Smokers	Nonsmokers	Cigarette Smokers	Cigar and Pipe Smokers
Mortality rates per 1000 person-years, % Average age, y	20.2 54.9	20.5 50.5	35.5 65.9	11.3 49.1	14.1 49.8	20.7 55.7	13.5 57.0	13.5 53.2	17.4 59.7
Adjusted mortality rates using subclasses, % 2 subclasses 3 subclasses 9–11 subclasses	20.2 20.2 20.2	26.4 28.3 29.5	24.0 21.2 19.8	11.3 11.3 11.3	12.7 12.8 14.8	13.6 12.0 11.0	13.5 13.5 13.5	16.4 17.7 21.2	14.9 14.2 13.7

Adapted from Tables 1-3 in Cochran (2).

subclassification p757 Rubin for bias reduction

<pre>> mfull= matchit(pr ~ date + cap, dat > common (full)</pre>	ta = bennuke, <mark>method = "full")</mark>
> summary(mfull)	
Summary of balance for all data:	ap, data = bennuke, method = "full")
Means Treated Means Control M	Mean Diff eQQ Med eQQ Mean eQQ Max
distance 0.2907 0.2613	0.0294 0.0398 0.0454 0.0852
date 3.8700 3.8079	0.0621 0.1600 0.1529 0.5800
cap 483.0000 403.2632	79.7368 65.0000 100.1429 283.0000
Summary of balance for matched data:	
Means Treated Means Control M	Mean Diff eQQ Med eQQ Mean eQQ Max
distance 0.2907 0.2939	-0.0032 0.0043 0.0113 0.0738
date 3.8700 3.6312	0.2388 0.1600 0.3107 1.4200
cap 483.0000 496.5905	-13.5905 23.0000 35.0232 261.0000
Percent Balance Improvement:	
Mean Diff. eQQ Med eQQ Mean	eQQ Max
distance 89.2703 89.1190 75.2162	13.3177
date -284.4471 0.0000 -103.2460	-144.8276
cap 82.9558 64.6154 65.0268	7.7739
Sample sizes:	
Control Treated	
All 19 7	
Matched 19 7	
Unmatched 0 0	
Discarded 0 0	
<pre>> mfull.data = match.data(mfull)</pre>	> mfull.data
date cap pr distance weights sub	oclass
1 3.58 287 0 0.2089340 0.4523810	3
2 2.33 665 0 0.3408701 2.7142857	1
3 2.33 665 1 0.3408701 1.0000000	1
4 3.00 665 0 0.3513216 2.7142857	2
5 3.00 665 1 0.3513216 1.0000000	2
6 2.92 114 0 0.1513795 0.5428571	4
7 3.17 422 0 0.2518308 0.4523810	3
8 3.42 57 0 0.1414043 0.5428571	4
9 3.42 422 1 0.2550915 1.0000000	3
10 3.33 392 0 0.2426859 0.4523810	3
11 3.58 160 0 0.1699374 0.5428571	4
12 3.75 390 0 0.2472990 0.4523810	3
13 3.42 130 0 0.1601291 0.5428571	4
14 3.92 650 0 0.3589552 0.9047619	5
15 3 02 450 0 0 2726000 1 3571420	7

15 3.92 450 0 0.2726900 1.3571429	7
16 3.42 378 0 0.2386883 0.4523810	3
17 4.50 445 0 0.2786707 1.3571429	7
18 3.42 130 1 0.1601291 1.0000000	4
19 4.17 690 0 0.3816748 0.9047619	5
20 3.92 650 1 0.3589552 1.0000000	5
21 3.75 513 0 0.2960073 2.7142857	6
22 5.92 428 1 0.2916721 1.0000000	6
23 4.67 386 0 0.2577539 0.4523810	3
24 5.08 421 1 0.2770347 1.0000000	7
25 5.42 138 0 0.1819249 0.5428571	4
26 6.08 730 0 0.4327688 0.9047619	5
<pre>> attach(mfull.data)</pre>	
<pre>> table(subclass)</pre>	
subclass	
<mark>1 2 3 4 5 6 7</mark>	
<mark>2 2 7 6 4 2 3</mark>	
> tapply(distance, list(pr,subclass), mea	an)
1 2 3	4 5 6 7
0 0.3408701 0.3513216 0.2411986 0.1609550	0.3911329 0.2960073 0.2756804
1 0.3408701 0.3513216 0.2550915 0.1601293	1 0.3589552 0.2916721 0.2770347
<pre>> tapply(cap, list(pr,subclass), mean)</pre>	<pre>> tapply(date, list(pr,subclass), mean)</pre>
1 2 3 4 5 6 7	1 2 3 4 5 6 7
0 665 665 375.8333 119.8 690 513 447.5	0 2.33 3 3.653333 3.752 4.723333 3.75 4.21
1 665 665 422.0000 130.0 650 428 421.0	1 2.33 3 3.420000 3.420 3.920000 5.92 5.08

Example # 2: Gender equity study for research scientists¹ For HW

Women and men scientists are to be matched on grant funding.

V	/omen		Men
Subject	Subject log ₁₀ (Grant)		log ₁₀ (Grant)
Α	5.7	V	5.5
В	4.0	W	5.3
С	3.4	Х	4.9
D	3.1	Y	4.9
		Z	3.9

¹Discussed in Hansen and Klopfer (2006), Hansen (2004) - CE - CE - OAC

Week 3

Ben Hansen, Gender Equity Example p2 stat209)**f**

> geneq = read.table(file="D:\\drr08\\stat209\\week8\\genderdata", header = T)

> geneq				
log10Grant gender		. 1		hill ex.
1 5.7 W	al	Han	scn I	
2 4.0 W Sel	and	,, .		0
3 3.4 W		da	in H	WED
4 3.1 W		ao	101 11	
5 5.5 M				
6 5.3 M				
7 4.9 M				
8 4.9 M				
9 3.9 M				
<pre># had some problems matchit; outcome has to be 1=W > #outcome has to be numeric categorical, not W/M</pre>	, 0=M	or do a	as.nume:	ric
<pre>> mfullgen= matchit(gender ~ Grant, data = geneq, n > summary(mfullgen) Call:</pre>	method	1 = "full	.")	
<pre>matchit(formula = gender ~ Grant, data = geneq, me</pre>	thod =	= "full")		
Summary of balance for all data:			00 14	
Means Treated Means Control Mean Diff eQQ) Med e	eQQ Mean	eQQ Max	
distance 0.576 0.339 0.237 0	.275	0.252	0.421	
Grant 4.050 4.900 -0.850 0	.850	0.850	1.500	
Summary of balance for matched data:	Mad	Noan	ooo Max	
Means Treated Means Control Mean Diff eQQ	2 Med (0 463	
distance 0.576 0.532 0.045 0	.129	0.121	1 800	
Grant 4.050 4.213 -0.163 0	0.500	0.507	1.800	
Percent Balance Improvement: Mean Diff. eQQ Med eQQ Mean eQQ Max distance 81.18 53.10 51.96 -9.927 Grant 80.88 41.18 40.37 -20.000				
Sample sizes:				
Control Treated				
All 5 4				
Matched 5 4				
Unmatched 0 0	ł	An Optimal	Full Matc	hing for the Ger
Discarded 0 0	E	Example		
weight and the match data (mfullgen)				
> mfullgen.dat = match.data(mfullgen)			Women	M
> miuligen.uat		Su	bject log10	Grant) Subject l
Grant gender distance wergins subcrass			A 5.7	V 5
			B 4.0 <	W S
$2 4.0 1 0.5905 1.0000 {2 } (2)$			C 3.4~	
3 3.4 1 0.7484 1.0000 72)			D 3.1	7
4 3.1 1 0.8103 1.0000 72				
5 5.5 0 0.1907 0.3125 (1)				(
5 5.3 0 0.2307 0.3125 1		As compa	red to the op	timal 1:(1 or 2) matc
1 4.9 0 0.32/1 0.3125 (1)		 decre 	eases the larg	jest discrepancy from
8 4.9 0 0.32/1 0.3125		 decre 	eases the sur	n of discrepancies fr
9 3.9 0 0.6192 3.7500 2		In global	erms, it gives	s a tighter match. In
> #corresponds to slide, subclass //		much tigh	ter match.	

sce Hensen talk

Gender Equity

p.t

) match, full matching:

cy from 1.5 to 0.8; and cies from 3.8 to 3.6.

ch. In local terms, it gives a much tighter match.

```
help.matchit
```

Description

The help.matchit command launches html help for Matchit commands and supported methods. The full manual is available online at http://gking.harvard.edu/matchit.

Usage

```
help.matchit(object)
```

Arguments

object	a character string representing a Matchit command or model. help.matchit ("command")
	will take you to an index of Matchit commands and help.matchit("method")
	will take you to a list of matching methods. The following inputs are currently
	available: exact, nearest, subclass, full, optimal.

Author(s)

 $\label{eq:linear} \begin{array}{l} \mbox{Daniel Ho} <\!\!\langle \mbox{daniel.ho} @\ \mbox{yale.edu} \rangle\!\!>; \ \mbox{Kosuke Imai} <\!\!\langle \mbox{kimai} @\ \mbox{princeton.edu} \rangle\!\!>; \ \mbox{Gary King} <\!\!\langle \mbox{king} @\ \mbox{harvard.edu} \rangle\!\!>; \ \mbox{Elizabeth Stuart} <\!\!\langle \mbox{stuart} @\ \mbox{stat.harvard.edu} \rangle\!\!> \end{array}$

See Also

The complete document is available online at http://gking.harvard.edu/matchit.

Lab 4 data for matching using Matchlt Is job training effective???

lalonde

Data from National Supported Work Demonstration and PSID, as analyzed by Dehejia and Wahba (1999).

Description

This is a subsample of the data from the treated group in the National Supported Work Demonstration (NSW) and the comparison sample from the Current Population Survey (CPS). This data was previously analyzed extensively by Lalonde (1986) and Dehejia and Wahba (1999). The full dataset is available at http://www.columbia.edu/~rd247/nswdata.html.

Usage

From Lab 4 data (lalonde)

- > dim(lalonde) [1] 614 10 [1]
- > names(lalonde) "treat" "age" "educ" "black" "hispan" "married" "nodegree" "re74" "re75" "re78"
 > attach(lalonde) > table(treat) treat 0 1 0 429 185 0
- > lalonde[1:10,] treat age educ black hispan married nodegree re74 re75 re78

match.data

Format

614 actually

A data frame with 313 observations (185 treated, 429 control). There are 10 variables measured for each individual. "treat" is the treatment assignment (1=treated, 0=control). "age" is age in years. "educ" is education in number of years of schooling. "black" is an indicator for African-American (1=African-American, 0=not). "hispan" is an indicator for being of Hispanic origin (1=Hispanic, 0=not). "married" is an indicator for married (1=married, 0=not married). "nodegree" is an indicator for whether the individual has a high school degree (1=no degree, 0=degree). "re74" is income in 1974, in U.S. dollars. "re75" is income in 1975, in U.S. dollars. "re78" is income in 1978, in U.S. dollars.

Source

http://www.columbia.edu/~rd247/nswdata.html

References

Lalonde, R. (1986). Evaluating the econometric evaluations of training programs with experimental data. *American Economic Review* 76: 604-620. \

Dehejia, R.H. and Wahba, S. (1999). Causal Effects in Nonexperimental Studies: Re-Evaluating the Evaluation of Training Programs. *Journal of the American Statistical Association* 94: 1053-1062.

match.data

Output Matched Data Sets

Description

match.data outputs matched data sets from matchit().

Usage

```
match.data <- match.data(object, group="all", distance = "distance",
weights = "weights", subclass = "subclass")
```

Arguments

object	The output object from matchit (). This is a required input.
group	This argument specifies for which matched group the user wants to extract the data. Available options are "all" (all matched units), "treat" (matched units in the treatment group), and "control" (matched units in the control group). The default is "all".
distance	This argument specifies the variable name used to store the distance measure. The default is "distance".
weights	This argument specifies the variable name used to store the resulting weights from matching. The default is "weights".
subclass	This argument specifies the variable name used to store the subclass indicator. The default is "subclass".

Value

Returns a subset of the original data set sent to this-is-escaped-code{, with ju

Next Up Previous Contents HOME

Next: Exact Matching Up: A User's Guide by Previous: Notation Contents

The Lalonde Data

For all of our examples, we use data from the job training program analyzed in <u>Lalonde (1986)</u> and <u>Dehejia & Wahba (1999)</u>. A subsample of the data consisting of the National Supported Work Demonstration (NSW) treated group and the comparison sample from the Population Survey of Income Dynamics (PSID) is included in MATCHIT, and the full dataset is available at <u>http://www.columbia.edu/~rd247/nswdata.html.⁵</u>

The variables in this dataset are in Table $\underline{1}$ below. One causal effect of interest is the impact that participation in the job training program, treat==1, had on real earnings in 1978, re78, for those that participated in the program, i.e., the average treatment effect on the treated (ATT):

where re78(treat=1) represents the potential outcome under the treatment of the job program, and re78(treat=0) under control. To be clear, note that the first term (inside the expectation) in Equation $\underline{1}$ is observed, whereas the second term is the *unobserved* counterfactual of real earnings if participants had not participated. The nature of causal inference is that one of the two terms in the difference will always be unobserved. The same expression of the ATT, in mathematical notation is:

(2)

Name	Description						
Outcome (^{Y(1)})							
re78	Real earnings (1978)						
Treatmen	nt Indicator ($^{T_i=1}$)						
treat	Treated in job training program from March 1975-June 1977 (1 if treated, 0 if not treated)						
Pre-treat	ment Covariates (===)						
age	Age						
educ	Years of education						
black	Race black (1 if black, 0 otherwise)						
hispan	Race hispanic (1 if Hispanic, 0 otherwise)						
married	Marital status (1 if married, 0 otherwise)						
nodegree	High school degree (1 if no degree, 0 otherwise)						
re74	Real earnings (1974)						
re75 Real earnings (1975)							

Table 1: Description of Lalonde data

Next Up Previous Contents HOME

Next: Exact Matching Up: <u>A User's Guide by</u> Previous: <u>Notation</u> Contents Gary King 2005-03-09 R version 3.2.2 (2015-08-14) -- "Fire Safety" #### Week 1 session. Lalonde data # If you start from a relatively clean install, get MatchIt and optmatch # some years order matters because of complication with license for optmatch algorithms this year appea > install.packages("optmatch") > library(optmatch) > install.packages("MatchIt") > library(MatchIt) ***** > data(lalonde) # in MatchIt package # get lalonde data from MatchIt, there are different versions in existence under this name help(lalonde) #produces ----lalonde package:MatchIt R Documentation Data from National Supported Work Demonstration and PSID, as analyzed by Dehejia and Wahba (1999).

Description:

This is a subsample of the data from the treated group in the National Supported Work Demonstration (NSW) and the comparison sample from the Current Population Survey (CPS). This data was previously analyzed extensively by Lalonde (1986) and Dehejia and Wahba (1999). The full dataset is available at <URL: http://www.columbia.edu/~rd247/nswdata.html>. [note: broken link still in current documentation]

Usage:

data(lalonde)

Format:

A data frame with 313 [sic, 614] observations (185 treated, 429 control). There are 10 variables measured for each individual. "treat" is the treatment assignment (1=treated, 0=control). "age" is age in years. "educ" is education in number of years of schooling. "black" is an indicator for African-American (1=African-American, 0=not). "hispan" is an indicator for being of Hispanic origin (1=Hispanic, 0=not). "married" is an indicator for married (1=married, 0=not married). "nodegree" is an indicator for whether the individual has a high school degree (1=no degree, 0=degree). "re74" is income in 1974, in U.S. dollars. "re75" is income in 1975, in U.S. dollars. "re78" is income in 1978, in U.S. dollars.

References:

Lalonde, R. (1986). Evaluating the econometric evaluations of training programs with experimental data. American Economic Review 76: 604-620.

Dehejia, R.H. and Wahba, S. (1999). Causal Effects in Nonexperimental Studies: Re-Evaluating the Evaluation of Training Programs. Journal of the American Statistical Association 94: 1053-1062.

> dim(lalonde)
[1] 614 10
> attach(lalonde)
> table(treat) # so these summaries synch with data description
treat
 0 1
429 185

> head(lalonde) treat age educ black hispan married nodegree re74 re75 re78 1 37 9930.0460 NSW1 11 1 0 1 1 0 0 22 3595.8940 NSW2 9 0 0 0 ٥ 1 1 1 NSW3 30 12 0 0 0 0 0 24909.4500 1 1 NSW4 27 0 0 0 7506.1460 1 11 1 0 1 NSW5 33 0 0 0 0 289.7899 8 1 1 1 4056.4940 NSW6 1 22 9 1 0 0 1 0 0 > tapply(re78, treat, median) 0 1 4975.505 4232.309 > tapply(re78, treat, fivenum) \$`0` 0.0000 220.1813 4975.5050 11688.8200 25564.6700 [1] \$`1` [1] 0.0000 485.2298 4232.3090 9642.9990 60307.9300 > t.test(re78 ~ treat) Welch Two Sample t-test data: re78 by treat t = 0.93773, df = 326.41, p-value = 0.3491 alternative hypothesis: true difference in means is not equal to 0 95 percent confidence interval: -697.192 1967.244 sample estimates: mean in group 0 mean in group 1 6984.170 6349.144 > wilcox.test(re78 ~ treat, conf.int = TRUE) Wilcoxon rank sum test with continuity correction data: re78 by treat W = 41840, p-value = 0.2818 alternative hypothesis: true location shift is not equal to 0 95 percent confidence interval: -4.664401e-05 1.053159e+03 sample estimates: difference in location 5.053114e-05 > #####But wait, some say "we are never done until the ancova is run" see Fish > # as we see the social science, life science practice is to put in the treatment variable and > # a whole bunch of other variables to "control" for self-selection, nonequivalence etc. > # equivalent to analysis of covariance by whatever name ancova.lalonde = lm(re78 ~ treat + age + educ + black + hispan + married + nodegree + re74 + re75) > > summary(ancova.lalonde) Call: $lm(formula = re78 \sim treat + (age + educ + black + hispan + married +$ nodegree + re74 + re75) Residuals: 1Q Median Min 30 Max Standard Analysis (ancova) -13595 -4894 -1662 54570 3929 Coefficients: OUTCOME ~ TREATMENT + Estimate Std. Error t value Pr(>|t|) (Intercept) 6.651e+01 2.437e+03 0.027 0.9782 (binary, contin) 1.982 0.0480 * treat 1.548e+03 7.813e+02 0.399 age 1.298e+01 3.249e+01 0.6897 **CONFOUNDERS** educ 4.039e+02 1.589e+02 2.542 0.0113 * black -1.241e+03 7.688e+02 -1.614 0.1071 (controls) hispan 4.989e+02 9.419e+02 0.530 0.5966 married 4.066e+02 6.955e+02 0.585 0.5590 nodegree 2.598e+02 8.474e+02 0.307 0.7593 see FISH (in the news) example re74 2.964e-01 5.827e-02 5.086 4.89e-07 ***

```
2.315e-01 1.046e-01
re75
                                    2.213
                                            0.0273 *
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 6948 on 604 degrees of freedom
Multiple R-squared: 0.1478, Adjusted R-squared: 0.1351
F-statistic: 11.64 on 9 and 604 DF, p-value: < 2.2e-16_
> # so treatment is significantly helpful ??
                                               First by hand, then by algorithm
########### Begin matching analysis; Quintile Subclassification with Propensity Scores
## original Rosenbaum-Rubin, cardiac; Rubin breast cancer
> # now do the logistic regression that computes propensity scores (matching packages will do this for
  glm.p = glm( treat ~ age + educ + black + hispan + married + nodegree + re74 + re75, data = lalonde,
>
 summary(glm.p)
Call:
glm(formula = treat ~ age + educ + black + hispan + married +
    nodegree + re74 + re75, family = binomial, data = lalonde)
Deviance Residuals:
   Min
             1Q
                 Median
                                3Q
                                        Max
-1.7645 -0.4736 -0.2862
                            0.7508
                                     2.7169
Coefficients:
              Estimate Std. Error z value Pr(>|z|)
(Intercept) -4.729e+00 1.017e+00 -4.649 3.33e-06 ***
                                  1.162 0.24521
age
            1.578e-02 1.358e-02
                                          0.01325 *
educ
            1.613e-01 6.513e-02 2.477
black
            3.065e+00 2.865e-01 10.699
                                          < 2e-16 ***
            9.836e-01 4.257e-01
                                  2.311
                                          0.02084 *
hispan
           -8.321e-01 2.903e-01 -2.866
                                          0.00415 **
married
                                  2.095
nodegree
            7.073e-01 3.377e-01
                                           0.03620 *
            -7.178e-05 2.875e-05 -2.497
                                          0.01253 *
re74
re75
            5.345e-05 4.635e-05
                                  1.153 0.24884
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
    Null deviance: 751.49 on 613 degrees of freedom
Residual deviance: 487.84 on 605 degrees of freedom
AIC: 505.84
Number of Fisher Scoring iterations: 5
> propen = fitted(glm.p)  # now we have the propensity scores
> quantile(propen) # overall distrib
         08
                    25%
                                50%
                                            75%
                                                       100%
0.009080193 0.048536484 0.120676493 0.638715991 0.853152844
> tapply(propen, treat, quantile) # look at overlap via 5-number summary (or side-by-side boxplots) not
$`0`
                                50%
         0%
                    25%
                                            75%
                                                       100%
0.009080193 0.038880745 0.075849106 0.195135746 0.789172834
$`1`
                 25%
                             50%
                                        75%
                                                  100%
        0%
0.02495179 0.52646352 0.65368426 0.72659995 0.85315284
> # as we are fitting prob(treat = 1) fits for those in treatment group will be larger, we need good ov
> boxplot(propen ~ treat) #gives side-by-side boxplots, you can add labels, not wonderful overlap
uetachi ( tatonue )
> lalonde$propen = propen
> attach(lalonde)
#### looking at overlap, histograms
 p1 = propen[treat == 1]
> length(p1)
[1] 185
> p0 = propen[treat == 0]
```

```
LAB 4 excerpt
```

```
# now do the logistic regression that computes propensity scores (matching packages will do this for
> glm.lalonde = glm( treat ~ age + educ + black + hispan + married + nodegree + re74 + re75,
+ data = lalonde, family = binomial)
> propen = fitted(glm.lalonde) # now we have the propensity scores, Lab script calls these propScore
> tapply(propen, treat, quantile) # look at overlap via 5-number summary (or side-by-side boxplots)
                                    not real good overlap, as noted in class handout
$`0`
     0%
            25%
                    50%
                            75%
                                    100%
0.00908 0.03888 0.07585 0.19514 0.78917
$`1`
     0%
            25%
                    50%
                            75%
                                   100%
0.02495 0.52646 0.65368 0.72660 0.85315
> # the common use of the propensity scores (backed by theory, class handout 2/26))
> # is to stratify by quintiles
> # the simple-minded way I do it is to use "cut", Lab script is fancier programming
> ?cut # this is a simple function to create bins
> k = 1:4
> quantile(propen, k/5)
    20%
            40%
                    60%
                            80%
0.04015 0.08721 0.26978 0.67085
> propbin = cut(propen, c(0, .04015,.08721,.26978,.67085,1))
> table(prophin, treat) # either way you display it, we do not have good overlap in the bottom
                          two quintiles, lower estimated probability for being in treatment
                          for treatment cases
                 treat
propbin
                    0
                        1
  (0, 0.0401]
                  122
                        1
  (0.0401, 0.0872) 116
                        7
  (0.0872, 0.27]
                  101
                       21
  (0.27, 0.671]
                   53
                       71
  (0.671,1]
                   37 85
> tapply(re78, list(propbin, treat),mean) # here are the mean diffs in re78 the outcome
                                              stratified by propensity quintile
# direction of mean diffs favors treatment, job training
                    0
                         1
(0, 0.0401]
                10467
                         0
(0.0401,0.0872] 5797 7919
(0.0872, 0.27]
                 6043 9211
(0.27, 0.671]
                 4977 5819
(0.671,1]
                 4666 6030
> t.test(re78[propbin == bins[5]] ~ treat[propbin == bins[5]]) # t-test for quintile 5
```



```
> length(p0)
[1] 429
  fivenum(p1)
>
                         NSW50
                                   NSW119
   NSW124
              NSW156
                                             NSW178
0.02495179 0.52646352 0.65368426 0.72659995 0.85315284
> fivenum(p0)
    PSID296
               PSTD347
                          PSTD221
                                     PSTD334
                                                 PSID118
                                                 017203
                          5040106
                                      51055
                                  0.1
  hist(p0,col=rgb(0,0,1,0.7),xlim=range(c(p0,p1)))
>
> hist(p1,col=rgb(1,0,0,0.7),add=T)
   # superimposed propensity histograms, like Ben Hansen SAT, contol is blue, treatment is red, overlap
>
> hist(p0, breaks = "FD", col=rgb(0,0,1,0.7),xlim=range(c(p0,p1)))
> hist(p1, breaks = "FD", col=rgb(1,0,0,0.7),add=T)
### make guintiles of propensity distribution
> pbin = cut(propen, quantile(propen, seq(0, 1, 1/5)), include.lowest = TRUE, labels = FALSE)
> detach(lalonde)
> lalonde$bins = pbin
> attach(lalonde)
>
  table(pbin, treat)
    treat
pbin
      0
          1
   1 122
         1
   2 116
         7
   3 101
         21
   4 53 71
   5 37 85
##### examples of checking balance (more to come)
> tapply(age, list(bins, treat), median)
   0 1
1 29 27
2 26 23
3 20 23
4 24 25
5 19 25
> ### install.packages("PSAgraphics")
  library(PSAgraphics)
  box.psa(age, treat, bins)
>
> tapply(re78, list(bins, treat),mean) # here are the mean diffs in re78 (the outcome) stratified by p
         0
                  1
1 10467.064
              0.000
  5796.548 7919.316
2
3
  6043.316 9210.726
  4977.401 5819.143
4
5
  4666.221 6030.258
> # direction of mean diffs favors treatment, job training
> # contrast that with the comparison ignoring any concerns about self-selection (selection bias), effe
>
  tapply(re78, treat, mean)
      0
               1
6984.170 6349.144
> ###### can do t-tests by subclassification (strata)
> # e.g. for the 3 upper quintiles is the mean difference significant? since we are doing 3 of these be
> ## we won't find any evidence for the effectiveness of job training looking at each of the subclasse
> library(lme4)
Loading required package: Matrix
> propen.lmer = lmer(re78 ~ treat + (1 + treat|bins), data = lalonde)
> summary(propen.lmer)
Linear mixed model fit by REML ['lmerMod']
```

Histogram of propen

Histogram of p0

Histogram of propensity overlap Freedman-Diaconis breaks

p0

Stratum

```
> length(p0)
[1] 429
  fivenum(p1)
>
                         NSW50
                                  NSW119
   NSW124
             NSW156
                                             NSW178
0.02495179 0.52646352 0.65368426 0.72659995 0.85315284
> fivenum(p0)
              PSTD347
                          PSID221
                                     PSID334
   PSTD296
                                                PSID118
0.009080193 0.038880745 0.075849106 0.195135746 0.789172834
> hist(p0,col=rgb(0,0,1,0.7),xlim=range(c(p0,p1)))
> hist(p1,col=rgb(1,0,0,0.7),add=T)
  # superimposed propensity histograms, like Ben Hansen SAT, contol is blue, treatment is red, overlap
>
> hist(p0, breaks = "FD", col=rgb(0,0,1,0.7),xlim=range(c(p0,p1)))
> hist(p1, breaks = "FD", col=rgb(1,0,0,0.7),add=T)
### make guintiles of propensity distribution
> pbin = cut(propen, quantile(propen, seq(0, 1, 1/5)), include.lowest = TRUE, labels = FALSE)
> detach(lalonde)
> lalonde$bins = pbin
> attach(lalonde)
> table(pbin, treat)
   treat
pbin 0
         1
         1
  1 122
  2 116
         7
   3 101
        21
   4 53 71
   5
     37 85
##### examples of checking balance (more to come)
> tapply(age, list(bins, treat), median)
  0 1
1 29 27
2 26 23
3 20 23
4 24 25
5 19 25
> ### install.packages("PSAgraphics")
> library(PSAgraphics)
  box.psa(age, treat, bins)
>
> tapply(re78, list(bins, treat),mean) # here are the mean diffs in re78 (the outcome) stratified by p
         0
                 1
1 10467.064
              0.000
2 5796.548 7919.316
3
  6043.316 9210.726
  4977.401 5819.143
4
  4666.221 6030.258
5
> # direction of mean diffs favors treatment, job training
> # contrast that with the comparison ignoring any concerns about self-selection (selection bias), effe
  tapply(re78, treat, mean)
>
      0
              1
6984.170 6349.144
> ###### can do t-tests by subclassification (strata)
> # e.g. for the 3 upper quintiles is the mean difference significant? since we are doing 3 of these be
> ## we won't find any evidence for the effectiveness of job training looking at each of the subclasse
> library(lme4)
Loading required package: Matrix
> propen.lmer = lmer(re78 ~ treat + (1 + treat bins), data = lalonde)
> summary(propen.lmer)
Linear mixed model fit by REML ['lmerMod']
```

```
Formula: re78 ~ treat + (1 + treat | bins)
   Data: lalonde
REML criterion at convergence: 12637.1
Scaled residuals:
    Min
             10 Median
                             30
                                    Max
-1.3976 -0.7541 -0.2878 0.5408 7.4535
Random effects:
 Groups
          Name
                      Variance Std.Dev. Corr
 bins
          (Intercept) 5208943 2282
          treat
                      2069963 1439
                                        -1.00
 Residual
                      52597981 7252
Number of obs: 614, groups: bins, 5
Fixed effects:
            Estimate Std. Error t value
(Intercept) 6434.2
                         1090.2
                                  5,902
treat
              385.7
                         950.8 0.406
Correlation of Fixed Effects:
      (Intr)
treat -0.795
# so here we have an overall estimate of the effect of the treat on re78 of positive $386, but
# far from significant. Much smaller point estimate than in some of the individual strata
> confint(propen.lmer) # bombs
> confint(propen.lmer, method = "boot", nsim = 1000, boot.type = "perc")
Computing bootstrap confidence intervals ...
                  2.5 %
                        97.5 %
.sig01
              414.81230 4084.578
.siq02
               -1.00000
                           1.000
.siq03
              54.74858 3644.981
.sigma
             6846.49101 7654.434
(Intercept) 4432.91940 8695.198
treat
           -1681.75647 2565.802
  some bootstrap runs failed (7/1000)
```

> m2full.out = matchit(treat ~ re74 + re75 + educ + black + hispan + age + married + nodegree, data = Warning message:

<pre>#let's tr > m2fully + data = > m2fully Call: matchit(f</pre>	ry <mark>Ben's ry ars.out = 1 alonde, vars.out = 5 ars.out = 5 ars.out = 5 ars.out</mark>	full : = mat meth trea	match chit(od = t ~ r	treat ~ re "full") re74 + re75	all the van 974 + re75 5 + educ +	rs; sould + educ + black +	also com black + hispan +	pare with hispan + a	propensity in part age + married + noo
age -	⊦ married	+ no	degre	e, data =	lalonde, <mark>r</mark>	method =	"full")		
Sample si	izes: Control	Trea	ted						
A11	429		185						
Matched	429		185						
Unmatched	1 0		0						
Discarded	d 0		0						
> summary	/m2fullv	ars.o	ut)						
Call:			,						
matchit(f	formula =	trea	t~r	e74 + re75	5 + educ +	black +	hispan +		
age +	⊦ married	+ no	degre	e, data =	lalonde, r	method =	"full")		
Summary o	of balance	e for	all	data:					
-	Means Tro	eated	Mean	s Control	Mean Diff	eQQ Med	eQQ Mean	eQQ Max	
distance		0.577		0.182	0.395	0.518	0.396	0.597	
re74	209	5.574		5619.237	-3523.663	2425.572	3620.924	9216.500	
re75	153	2.055		2466.484	-934.429	981.097	1060.658	6795.010	
educ	1	0.346		10.235	0.111	1.000	0.703	4.000	
black		0.843		0.203	0.640	1.000	0.643	1.000	
hispan		0.059		0.142	-0.083	0.000	0.081	1.000	
age	2	5.816		28.030	-2.214	1.000	3.265	10.000	
married		0.189		0.513	-0.324	0.000	0.324	1.000	
nodegree		0.708		0.597	0.111	0.000	0.114	1.000	
Summary o	of balance	e for	matc	hed data:					
-	Means Tro	eated	Mean	s Control	Mean Diff	eQQ Med	eQQ Mean	eQQ Max	
distance		0.577		0.576	0.001	0.003	0.006	0.087	
re74	209	5.574		2434.869	-339.295	311.523	659.367	13121.750	
re75	153	2.055		1577.728	-45.672	205.887	468.549	12746.050	
educ	1	0.346		10.442	-0.096	0.000	0.392	4.000	
black		0.843		0.835	0.009	0.000	0.000	1.000	
hispan		0.059		0.061	-0.001	0.000	0.002	1.000	
age	2	5.816		24.707	1.110	3.000	3.141	9.000	
married		0.189		0.131	0.058	0.000	0.044	1.000	
nodegree		0.708		0.695	0.013	0.000	0.011	1.000	
Percent H	Balance I	mprov	<mark>ement</mark>	::					
	Mean Dif:	f. eQ	Q Med	<mark>l eQQ</mark> Mean	eQQ Max				
distance	99.	64	99.50	98.493	85.49				
re74	90.	37	87.16	81.790	-42.37				
re75	95.	11	79.02	55.825	-87.58				
educ	13.	08 1	00.00	44.158	0.00				
black	98.	66 1	00.00	99.938	0.00				
hispan	98.3	26	0.00	98.027	0.00				
age	49.	88 -2	00.00	3.788	10.00				
married	82.	06	0.00	86.557	0.00				
nodegree	88.	53	0.00	90.133	0.00				

Sample	sizes:	
	Control	Treated
All	429	185
Matcheo	d 429	185

Discard			0	0									
Discuit	lod		0	0									
	leu		0	0									
#### dc	<mark>b the</mark>	out	come r	e78 ana	lysis								
> m2ful	llvar	s.ou	t = ma	tchit(t:	reat ~ 1	ce74 + r	e75 + ea	duc +	blac	k + hispan	. + age + 1	married	+ nc
				_									
> m2ful	ll.da	it = 1	match.	data(m2:	fullvars	s.out)							
> head(m2fu	ill.d	at) odug b	laak hi		cried no	dogroo		co 7 5	x 079	diatona	o woight	a a.
UL NSW1	.eal 1	age i	11		span mai 0	1 10 1	uegree i 1	0	Le75 0	9930 0460		a a	5 SL 1
NSW1	1	22	9	0	1	0	1	0	0	3595.8940	0.224634	2	1
NSW3	1	30	12	1	0	0	0	0 0	0	24909.4500	0.678243	9	1
NSW4	1	27	11	1	0	0	1	0	0	7506.1460	0.776324	1	1
NSW5	1	33	8	1	0	0	1	0	0	289.7899	0.701638	7	1
NSW6	1	22	9	1	0	0	1	0	0	4056.4940	0.699069	9	1
> libra	ary(1	.me4)	_			-		_	_				_
> mfull	L.Ime	r =	Imer(r	e78 ~ t:	reat +	(1 + tre	at subc.	lass),	, dat	a = m2full	.dat) # 1	ike for	the
> Summa Tipoor	ury(m miwo		·Imer)			rModul							
Linear	mixe	20 11100			AT L.TWE	ermou'j	~ ~ \						
Formula	a: re	e/8 ~	treat	+ (1 +	treat	SUDCIA	ss)						
Data	1: IIIZ	TUTT	.uat										
DEM					1000								
REML Cr	riter	ion a	at con	vergence	e: 1263.	3.5							
Scaled	resı	.dua1	s:										
Mim		10	Madi	~ ~	20	Morr							
Min 1 5267	1 7 0	1Q	Medi	an 51 0 5	3Q	Max							
Min —1.5267	n 7 -0.	1Q 7497	Medi -0.28	an 51 0.5	3Q 165 7.4	Max 1616							
Min -1.5267 Bandom	n 7 -0.	1Q 7497	Medi -0.28	an 51 0.5	3Q 165 7.4	Max 4616							
Mir. -1.5267 Random Groups	n 7 -0. effe	1Q 7497 ects:	Medi -0.28	an 51 0.53	30 165 7.4	Max 1616	r						
Mir -1.5267 Random Groups subcla	n 7 -0. effe 5 N	1Q 7497 ects: Iame	Media -0.28	an 51 0.5 Varian 40278	3Q 165 7.4 ce Std.I	Max 1616 Dev. Cor	r						
Mir -1.5267 Random Groups subcla	on 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1Q 7497 ects: Iame Inte	Medi -0.28 rcept)	an 51 0.5 Varian 40278 38100	3Q 165 7.4 ce Std.I 97 2007 81 1952	Max 1616 Dev. Cor	r 89						
Mir -1.5267 Random Groups subcla Residu	n effe s N ass (t	1Q 7497 ects: Iame Inte: reat	Medi -0.28 rcept)	an 51 0.5 Varian 40278 38100 511039	3Q 165 7.4 ce Std.1 97 2007 81 1952 06 7149	Max 1616 Dev. Cor -0.	r 89						
Mir. -1.5267 Random Groups subcla Residu Number	n effe s N ass (t aal of o	1Q 7497 ects: ame Inte: reat	Medi -0.28 rcept) 614, g	an 51 0.5 Varian 40278 38100 511039 roups:	3 <u>0</u> 165 7.4 ce Std.1 97 2007 81 1952 06 7149 subclas	Max 4616 Dev. Cor -0. 35, 104	r 89						
Mir -1.5267 Random Groups subcla Residu Number	effe s N ass (t al	1Q 7497 ects: ame Inte: reat	Medi -0.28 rcept) 614, g	an 51 0.5 Variand 40278 38100 511039 roups:	3Q 165 7.4 ce Std.I 97 2007 81 1952 06 7149 subclas	Max 4616 Dev. Cor -0. 55, 104	r 89						
Mir -1.5267 Random Groups subcla Residu Number Fixed e	effe s N ass (t of o effec	1Q 7497 ects: Iame Inte: reat obs: ets:	Medi -0.28 rcept) 614, g	an 51 0.5 Varian 40278 38100 511039 roups:	3Q 165 7.4 ce Std.I 97 2007 81 1952 06 7149 (subclas	Max 4616 Dev. Cor -0. ss, 104	r 89						
Mir -1.5267 Random Groups subcla Residu Number Fixed e	effe s N ass (of o effec	1Q 7497 ects: ame Inte reat obs: ets: Est	Medi -0.28 rcept) 614, g	an 51 0.5 Varian 40278 38100 511039 roups: Std. Er:	3Q 165 7.4 ce Std.I 97 2007 81 1952 06 7149 subclas	Max 4616 Dev. Cor -0. 55, 104	r 89						
Mir -1.5267 Random Groups subcla Residu Number Fixed e (Interc	effe s N ass (of o effec cept)	1Q 7497 ects: Iame Inte: reat bbs: ets: Est: 5	Medi -0.28 rcept) 614, g imate 862.9	an 51 0.5 Varian 40278 38100 511039 roups: Std. Er: 50	3Q 165 7.4 ce Std.I 97 2007 81 1952 06 7149 Subclas ror t va 7.8 11	Max 4616 Dev. Cor -0. 55, 104 alue .546	r 89						
Mir -1.5267 Random Groups subcla Residu Number Fixed e (Interc treat	n effe s N ass (tal of o effec cept)	1Q 7497 ects: Iame Inte: reat ebs: Est: 5	Medi -0.28 rcept) 614, g imate 862.9 504.5	an 51 0.5 Varian 40278 38100 511039 roups: Std. Er: 50 73	3Q 165 7.4 ce Std.I 97 2007 81 1952 06 7149 (subclas ror t va 7.8 11 6.2 0	Max 4616 Dev. Cor -0. 55, 104 alue .546 .685	r 89 ## about	the :	same	e as seen i	<mark>n base se</mark> t	ction 38	<u>4</u> (9
Mir -1.5267 Random Groups subcla Residu Number Fixed e (Interc treat	effe s N ass (of o effec cept)	1Q 7497 ects: lame Inte: reat bbs: ts: Est: 5	Medi -0.28 rcept) 614, g imate 862.9 504.5	an 51 0.5 Variand 40278 38100 511039 roups: Std. Er: 50 73	3Q 165 7.4 ce Std.I 97 2007 81 1952 06 7149 subclas ror t va 7.8 11.6 6.2 0.	Max 4616 Dev. Cor -0. 55, 104 alue 546 .685	r 89 <mark>## about</mark>	the	same	e as seen i	n base se	ction 38	<mark>4 (</mark> 9
Mir -1.5267 Random Groups subcla Residu Number Fixed e (Interc treat Correla	effe Nass (tal of o cept)	1Q 7497 ects: ame Inte: reat ets: Est: 5; () ()	Medi -0.28 rcept) 614, g imate 862.9 504.5 Fixed	an 51 0.5 Varian 40278 38100 511039 roups: Std. Er: 50 73 Effects	3Q 165 7.4 ce Std.I 97 2007 81 1952 06 7149 (subclas ror t va 7.8 11. 6.2 0.	Max 4616 Dev. Cor -0. 55, 104 alue .546 .685	r 89 <mark>## about</mark>	: the	same	e as seen i	n base se	ction 38	<mark>4 (</mark> 9
Mir -1.5267 Random Groups subcla Residu Number Fixed e (Interc treat Correla	effe s N ass (tal of o cept) ation	10 7497 ects: Iame Inte: reat ets: Est: 5	Medi -0.28 rcept) 614, g imate 862.9 504.5 Fixed	an 51 0.5 Varian 40278 38100 511039 roups: Std. Er: 50 73 Effects	3Q 165 7.4 ce Std.I 97 2007 81 1952 06 7149 (subclass ror t va 7.8 11 6.2 0,	Max 4616 Dev. Cor -0. ss, 104 alue .546 .685	r 89 ## about	the :	same	e as seen i	<mark>n base se</mark>	ction 38	4 (<u>S</u>
Mir -1.5267 Random Groups subcla Residu Number Fixed e (Interc treat (treat - treat -	effe s N ass (tal of o effec cept) ation (Intr -0.67	10 7497 ects: Iame Inte: reat bbs: Est: 5 (Medi -0.28 rcept) 614, g imate 862.9 504.5 Fixed	an 51 0.5 Varian 40278 38100 511039 roups: Std. Er: 50 730 Effects	3Q 165 7.4 ce Std.I 97 2007 81 1952 06 7149 (subclass ror t va 7.8 11 6.2 0.	Max 4616 Dev. Cor -0. 55, 104 alue .546 .685	r 89 <mark>## about</mark>	the the	same	e as seen i	n base se	ction 38	<mark>4 (</mark> 5
Mir -1.5267 Random Groups subcla Residu Number Fixed e (Interc treat Correla (treat - > confi	effe s N ass (of o effec cept) ation (Intr -0.67	1Q 7497 ects: Iame Inte: reat ets: Est: 5; () 9 full	Medi -0.28 rcept) 614, g imate 862.9 504.5 Fixed 1 .lmer)	an 51 0.5 Varian 40278 38100 511039 roups: Std. Er: 50 73 Effects fidence	3Q 165 7.4 ce Std.I 97 2007 81 1952 06 7149 (subclas ror t va 7.8 11 6.2 0.	Max 4616 Dev. Cor -0. 55, 104 alue .546 .685	r 89 ## about ook a wi	: the	same	e as seen i	<mark>n base se</mark>	ction 38	<mark>4 (</mark> 9
Mir. -1.5267 Random Groups subcla Residu Number Fixed e (Interc treat Correla (treat - > confi Computi	effe s N ass (tal of o effec cept) ation (Intr -0.67 int(m ing p	1Q 7497 ects: Iame Inte: reat ets: Est: 5 9 full profil	Medi -0.28 rcept) 614, g imate 8 862.9 504.5 Fixed 1 .lmer) le con	an 51 0.5 Varian 40278 38100 511039 roups: Std. Er: 50 73 Effects fidence	3Q 165 7.4 ce Std.I 97 2007 81 1952 06 7149 (subclas ror t va 7.8 11.6 6.2 0.4 :	Max 4616 Dev. Cor -0. 55, 104 alue .546 .685 (# this t als	r 89 ## about ook a wi	: the	same	e as seen i	.n base se	ction 38	<mark>4 (</mark> 5
Mir. -1.5267 Random Groups subcla Residu Number Fixed e (Interc treat Correla (treat - > confi Computi	effe s N ass (tal of o effec cept) ation (Intr -0.67 int(m ing p	1Q 7497 ects: Iame Inte: reat ets: Est: 5 9 full profi.	Medi -0.28 rcept) 614, g imate 862.9 504.5 Fixed 1 .lmer) le con 2.5 %	an 51 0.5 Varian 40278 38100 511039 roups: Std. Er: 50 73 Effects fidence 97.5 3011 0	3Q 165 7.4 ce Std.I 97 2007 81 1952 06 7149 (subclas ror t va 7.8 11 6.2 0. :	Max 4616 Dev. Cor -0. 55, 104 alue .546 .685 4 this t	r 89 <mark>## about</mark> ook a wł	the nile	same	e as seen i	.n base se	ction 38	<mark>4 (</mark> 9
Mir. -1.5267 Random Groups subcla Residu Number Fixed e (Interc treat Correla (treat - > confi Computi .sig01	effe s N ass (tal of o effec cept) ation (Intr -0.67 int(m	1Q 7497 ects: Iame Inte: reat bbs: Est: 5; () () () () () () () () () () () () ()	Medi -0.28 rcept) 614, g imate 862.9 504.5 Fixed 1 .lmer) le con 2.5 % 6.8647	an 51 0.5 Varian 40278 38100 511039 roups: Std. Er: 50 73 Effects fidence 97.5 3011.9 1 0	3Q 165 7.4 ce Std.I 97 2007 81 1952 06 7149 (subclass ror t va 7.8 11 6.2 0. : interva % 68 00	Max 4616 Dev. Cor -0. 55, 104 alue .546 .685 4 this t als	r 89 <mark>## about</mark> ook a wł	the the	same	e as seen i	n base se	ction 38	<mark>4 (</mark> 5
Mir -1.5267 Random Groups subcla Residu Number Fixed e (Intercondering) Correla (treat - > confi Computi .sig01 .sig02 sig02	effe Nass (tal of o effec cept) ation (Intr -0.67 int(m	10 7497 ects: Iame Inte: reat bs: Est: 5 9 full profi 1210	Medi -0.28 rcept) 614, g imate 862.9 504.5 Fixed .lmer) le con 2.5 % 6.8647 1.0000	an 51 0.5 Varian 40278 38100 511039 roups: Std. Er: 50 73 Effects fidence 97.5 3011.9 1.0	3Q 165 7.4 ce Std.I 97 2007 81 1952 06 7149 (subclass ror t va 7.8 11 6.2 0 : interva % 68 00 of	Max 4616 Dev. Cor -0. 38, 104 alue .546 .685 4 this t als	r 89 ## about ook a wł	the nile	same	e as seen i	<u>n base se</u>	ction 38	<u>4</u> (<u>9</u>
Mir -1.5267 Random Groups subcla Residu Number Fixed e (Interco treat) Correla (treat - > confi Computi .sig01 .sig02 .sig03	effe Nass (tal of o effec cept) ation (Intr -0.67 int(m	10 7497 ects: Iame Inte: reat ets: Est: 59 full profi 1210 -	Medi -0.28 rcept) 614, g imate 862.9 504.5 Fixed .lmer) le con 2.5 % 6.8647 1.0000 0.0000 0.8624	an 51 0.5 Varian 40278 38100 511039 roups: Std. Er: 50 73 Effects fidence 97.5 3011.9 1.00 11	3Q 165 7.4 ce Std.I 97 2007 81 1952 06 7149 (subclass ror t va 7.8 11. 6.2 0. : interva % 68 00 nf 14	Max 4616 Dev. Cor -0. 55, 104 alue .546 .685 # this t als	r 89 ## about ook a wi	the nile	same	e as seen i	n base se	ction 38	<u>4</u> (<u>5</u>
Mir -1.5267 Random Groups subcla Residu Number Fixed e (Interc treat Correla (treat - > confi Computi .sig01 .sig02 .sig03 .sigma	effe s N ass (tal of o effec cept) ation (Intr -0.67 int(m ing p	10 7497 ects: Iame Inte: reat ets: Est: 53 (1) 9 ifull profi 121 (674 (480)	Medi -0.28 rcept) 614, g imate 862.9 504.5 Fixed .lmer) le con 2.5 % 6.8647 1.0000 0.0000 0.8624 7.1941	an 51 0.5 Varian 40278 38100 511039 roups: Std. Er: 50 73 Effects fidence 97.5 3011.9 1.0 1.0 1.0 581.4 6873 7	3Q 165 7.4 ce Std.I 97 2007 81 1952 06 7149 (subclass ror t va 7.8 11 6.2 0. : interva % 68 00 nf 14 22	Max 4616 Dev. Cor -0. 55, 104 alue 546 .685 (4 this t als	r 89 ## about ook a wl	the nile	same	as seen i	n base se	ction 38	<mark>4 (</mark> 5
Mir -1.5267 Random Groups subcla Residu Number Fixed e (Interc treat Correla (treat - > confi Computi .sig01 .sig02 .sig03 .sigma (Interc treat	effe s N ass (of o effec effec cept) ation (Intr -0.67 int(m ing p	10 7497 ects: Iame Inte: reat ets: Est: 59 ifull rofi: 1210 674 480 -98	Medi -0.28 rcept) 614, g imate 862.9 504.5 Fixed 1 .lmer) le con 2.5 % 6.8647 1.0000 0.0000 0.8624 7.1941 5.7685	an 51 0.5 Varian 40278 38100 511039 roups: Std. Er: 50 73 Effects fidence 97.5 3011.9 1.00 1.	3Q 165 7.4 ce Std.I 97 2007 81 1952 06 7149 (subclass ror t va 7.8 11 6.2 0 : interva % 68 00 nf 14 22 73	Max 4616 Dev. Cor -0. 55, 104 alue 546 .685 4 this t als	r 89 ## about ook a wi	the nile	same	e as seen i	<mark>n base se</mark>	ction 38	<mark>4 (</mark> ⊆

```
Formula: re78 ~ treat + (1 + treat | bins)
   Data: lalonde
REML criterion at convergence: 12637.1
Scaled residuals:
          1Q Median
                             30
    Min
                                    Max
-1.3976 -0.7541 -0.2878 0.5408 7.4535
Random effects:
                      Variance Std.Dev. Corr
 Groups
          Name
 bins
          (Intercept) 5208943 2282
                       2069963 1439
                                        -1.00
          treat
 Residual
                      52597981 7252
Number of obs: 614, groups: bins, 5
Fixed effects:
            Estimate Std. Error t value
(Intercept)
              6434.2
                         1090.2
                                  5.902
treat
              385.7
                         950.8 0.406
Correlation of Fixed Effects:
      (Intr)
treat -0.795
# so here we have an overall estimate of the effect of the treat on re78 of positive $386, but
# far from significant. Much smaller point estimate than in some of the individual strata
> confint(propen.lmer) # bombs
> confint(propen.lmer, method = "boot", nsim = 1000, boot.type = "perc")
Computing bootstrap confidence intervals ...
                  2.5 % 97.5 %
.sig01
              414.81230 4084.578
.siq02
               -1.00000
                          1.000
.siq03
               54.74858 3644.981
.sigma
             6846.49101 7654.434
(Intercept) 4432.91940 8695.198
treat
           -1681.75647 2565.802
```

```
some bootstrap runs failed (7/1000)
```

################################ Full Matching (Hansen, via Rosenbaum, using MatchIt)

> m2full.out = matchit(treat ~ re74 + re75 + educ + black + hispan + age + married + nodegree, data = Warning message: In fullmatch(d, ...) : Without 'data' argument the order of the match is not guaranteed to be the same as your original data. > summary(m2full.out) Call: matchit(formula = treat ~ re74 + re75 + educ + black + hispan + age + married + nodegree, data = lalonde, method = "full") Summary of balance for all data: Means Treated Means Control Mean Diff eOO Med eOO Mean eOO Max 0.3952 distance 0.5774 0.1822 0.5176 0.3955 0.5966 re74 2095.5737 5619.2365 -3523.6628 2425.5720 3620.9240 9216.5000 re75 1532.0553 2466.4844 -934.4291 981.0968 1060.6582 6795.0100 educ 10.3459 10.2354 0.1105 1.0000 0.7027 4.0000 black 0.8432 0.2028 0.6404 1.0000 0.6432 1.0000 hispan 0.0595 0.1422 -0.0827 0.0000 0.0811 1.0000 28.0303 1.0000 3.2649 age 25.8162 -2.2141 10.0000

married	0.1892	0.5128	-0.3236	0.0000	0.3243	1.0000
nodegree	0.7081	0.5967	0.1114	0.0000	0.1135	1.0000

Summary	of balance for	matched data:				
	Means Treated	Means Control	Mean Diff	eQQ Med	eQQ Mean	eQQ Max
distance	0.5774	0.5761	0.0013	0.0026	0.0066	0.096
re74	2095.5737	2199.7126	-104.1390	72.6510	512.7210	13121.750
re75	1532.0553	1524.8362	7.2191	209.6655	460.5643	12746.050
educ	10.3459	10.3227	0.0233	0.0000	0.4596	4.000
black	0.8432	0.8347	0.0086	0.0000	0.0020	1.000
hispan	0.0595	0.0583	0.0012	0.0000	0.0012	1.000
age	25.8162	24.6928	1.1235	3.0000	3.3100	9.000
married	0.1892	0.1285	0.0607	0.0000	0.0544	1.000
nodegree	0.7081	0.7040	0.0041	0.0000	0.0028	1.000

Percent Balance Improvement:

	Mean Diff.	eQQ Med	eQQ Mean	eQQ Max
distance	99.6662	99.5001	98.3388	83.9052
re74	97.0446	97.0048	85.8401	-42.3724
re75	99.2274	78.6295	56.5775	-87.5796
educ	78.9494	100.0000	34.5954	0.0000
black	98.6582	100.0000	99.6891	0.0000
hispan	98.5858	0.0000	98.5200	0.0000
age	49.2583	-200.0000	-1.3825	10.0000
married	81.2495	0.0000	83.2267	0.0000
nodegree	96.3435	0.0000	97.5333	0.0000

Sample sizes:

	Control	Treated
All	<mark>429</mark>	185
Matched	<mark>429</mark>	185
Unmatched	0	0
Discarded	0	0

> <pre>summary(m2full.out(standardize = T))</pre>											
Call:											
matchit(formula = treat ~ re74 + re75 + educ + black + hispan +											
age + married + nodegree, data = lalonde, method = "full")											
Summary of	balance for	all data:		1							
Me	eans Treated	Means Control	Std. Mean Diff.	eCDF Med	eCDF Mean	eCDF Max					
distance	0.5774	0.1822	1.7941	0.3964	0.3774	0.6444					
re74	2095.5737	5619.2365	-0.7211	0.2335	0.2248	0.4470					
re75	1532.0553	2466.4844	-0.2903	0.1355	0.1342	0.2876					
educ	10.3459	10.2354	0.0550	0.0228	0.0347	0.1114					
black	0.8432	0.2028	1.7568	0.3202	0.3202	0.6404					
hispan	0.0595	0.1422	-0.3489	0.0414	0.0414	0.0827					
age	25.8162	28.0303	-0.3094	0.0827	0.0813	0.1577					
married	0.1892	0.5128	-0.8241	0.1618	0.1618	0.3236					
nodegree	0.7081	0.5967	0.2443	0.0557	0.0557	0.1114					
Summary of	balance for	matched data:									
Me	eans Treated	Means Control	Std. Mean Diff.	eCDF Med	eCDF Mean	eCDF Max					
distance	0.5774	0.5761	0.0060	0.0060	0.0085	0.0596					
re74	2095.5737	2199.7126	-0.0213	0.0160	0.0476	0.2268					
re75	1532.0553	1524.8362	0.0022	0.0348	0.0693	0.2324					
educ	10.3459	10.3227	0.0116	0.0286	0.0275	0.0568					
black	0.8432	0.8347	0.0236	0.0104	0.0104	0.0208					
hispan	0.0595	0.0583	0.0049	0.0036	0.0036	0.0072					
age	25.8162	24.6928	0.1570	0.0416	0.0857	0.3436					
married	0.1892	0.1285	0.1545	0.0366	0.0366	0.0732					
nodegree	0.7081	0.7040	0.0089	0.0008	0.0008	0.0016					

Std. Mean Diff.eCDF Med eCDF MeaneCDF Maxdistance99.666298.486397.745290.7506re7497.044693.148878.832149.2658re7599.227474.319848.359719.2062educ78.9494-25.613720.872248.9995black98.658296.752396.7523hispan98.585891.297291.2972age49.258349.7246-5.3122married81.249577.381777.3817nodegree96.343598.563498.5634	
Sample sizes: Control Treated	
A11 429 185	
Unmatched 0 0	
Discarded 0 0	
<pre>> plot(summary(m2full.out, standardize = T)) [1] "To identify the variables, use first mouse warning: nearest point already identified integer(0) > setwd("D:\\dr16\\somgen290\\week1\\") > plot(m2full.out) Waiting to confirm page change Waiting to confirm page change > # gives you 00 plots for each yar</pre>	
<pre>> detach(laionde) > m2full.dat = match.data(m2full.out) # obtain results from the full matching</pre>	
$h = h = d(m^2 f u) d = 1$	
treat age educ black hispan married nodegree re74 re75 re78 propen hips distance w	oi <i>d</i> hte
Interact (m21011.0dc) Treat (m21011.0dc) treat age educ black hispan married nodegree re74 re75 re78 propen NSW1 1 37 11 1 0 1 0 9930.0460 0.6387699 4 0.6387699	eights 1
Interact (m21011.0dc) treat (m21011.0dc) treat age educ black hispan married nodegree re74 re75 re78 propen bins distance w NSW1 1 37 11 0 1 1 0 9930.0460 0.6387699 4 0.6387699 NSW2 1 22 9 0 1 0 1 0 0 3595.8940 0.2246342 3 0.2246342	eights 1 1
Interact metric matrix duely treat age educ black hispan married nodegree re74 re75 re78 propen bins distance w NSW1 1 37 11 0 1 0 9930.0460 0.6387699 4 0.6387699 NSW2 1 22 9 0 1 0 0 3595.8940 0.2246342 3 0.2246342 NSW3 1 30 12 1 0 0 0 24909.4500 0.6782439 5 0.6782439 NSW4 1 27 11 1 0 0 1 0 0 7766 1460 0 7763241 5 0 7763241 5 0 7763241 5 0 7763241 5 0 7763241 5 0 7763241 5 0 7763241 5 0 7763241 5 0 7763241 5 0 7763241 5 0 7763241 5 0 7763241 5 0 7763241 5 0 7763241 5 0 7763241 5	eights 1 1 1
Interact metric metric metric model ispan married nodegree re74 re75 re78 propen bins distance w NSW1 1 37 11 1 0 1 1 0 9930.0460 0.6387699 4 0.6387699 NSW2 1 22 9 0 1 0 0 3595.8940 0.2246342 3 0.2246342 NSW3 1 30 12 1 0 0 0 24909.4500 0.6782439 5 0.6782439 NSW4 1 27 11 1 0 0 1 0 07506.1460 0.7763241 5 0.7763241 NSW5 1 33 8 1 0 0 1 0 289.7899 0.7016387 5 0.7016387	eights 1 1 1 1 1
treat age educ black hispan married nodegree re74 re75 re78 propen bins distance w NSW1 1 37 11 1 0 1 1 0 9930.0460 0.6387699 4 0.6387699 NSW1 1 37 11 1 0 1 1 0 9930.0460 0.6387699 4 0.6387699 NSW2 1 22 9 0 1 0 0 3595.8940 0.2246342 3 0.2246342 NSW3 1 30 12 1 0 0 0 24909.4500 0.6782439 5 0.6782439 NSW4 1 27 11 1 0 0 1 0 0.7506.1460 0.7763241 5 0.706387 NSW5 1 33 8 1 0 0 1 0 289.7899 0.7016387 5 0.6990699 NSW6 1 22 9 1 0 0 1 0 0.6990699 5 0.6990699	eights 1 1 1 1 1 1
<pre>> head(m21011.dat) treat age educ black hispan married nodegree re74 re75 re78 propen bins distance w NSW1 1 37 11 1 0 1 1 0 0 9930.0460 0.6387699 4 0.6387699 NSW2 1 22 9 0 1 0 1 0 0 3595.8940 0.2246342 3 0.2246342 NSW3 1 30 12 1 0 0 0 0 0 0 24909.4500 0.6782439 5 0.6782439 NSW4 1 27 11 1 0 0 1 0 0 7506.1460 0.7763241 5 0.7763241 NSW5 1 33 8 1 0 0 1 0 0 289.7899 0.7016387 5 0.7016387 NSW6 1 22 9 1 0 0 1 0 0 4056.4940 0.6990699 5 0.6990699 > dim(m2full.dat) [1] 614 15 > head(m2full.dat) treat age educ black hispan married nodegree re74 re75 re78 propen bins_distance w</pre>	eights 1 1 1 1 1 2
<pre>treat age educ black hispan married nodegree re74 re75 re78 propen bins distance w NSW1 1 37 11 1 0 1 1 0 0 9930.0460 0.6387699 4 0.6387699 NSW2 1 22 9 0 1 0 1 0 0 3595.8940 0.2246342 3 0.2246342 NSW3 1 30 12 1 0 0 0 0 0 0 24909.4500 0.6782439 5 0.6782439 NSW4 1 27 11 1 0 0 1 0 0 7506.1460 0.7763241 5 0.7763241 NSW5 1 33 8 1 0 0 1 0 0 289.7899 0.7016387 5 0.7016387 NSW6 1 22 9 1 0 0 1 0 0 4056.4940 0.6990699 5 0.6990699 > dim(m2full.dat) [1] 614 15 > head(m2full.dat) [1] 614 15 > head(m2full.dat) NSW1 1 37 11 1 0 1 1 0 0 9930.0460 0.6387699 4 0.6387699</pre>	eights 1 1 1 1 1 2 eights
<pre>> head(m2full.dat) treat age educ black hispan married nodegree re74 re75 re78 propen bins distance w NSW1 1 37 11 1 0 1 1 0 0 9930.0460 0.6387699 4 0.6387699 NSW2 1 22 9 0 1 0 1 0 0 3595.8940 0.2246342 3 0.2246342 NSW3 1 30 12 1 0 0 0 0 0 24909.4500 0.6782439 5 0.6782439 NSW4 1 27 11 1 0 0 1 0 0 7506.1460 0.7763241 5 0.7763241 NSW5 1 33 8 1 0 0 1 0 0 289.7899 0.7016387 5 0.7016387 NSW6 1 22 9 1 0 0 1 0 0 4056.4940 0.6990699 5 0.6990699 > dim(m2full.dat) [1] 614 15 > head(m2full.dat) treat age educ black hispan married nodegree re74 re75 re78 propen bins distance w NSW1 1 37 11 1 0 1 1 0 0 9930.0460 0.6387699 4 0.6387699 NSW2 1 22 9 0 1 0 1 0 0 3595.8940 0.2246342 3 0.2246342</pre>	eights 1 1 1 1 1 eights 1
<pre>> nead(m2ful1.dat) treat age educ black hispan married nodegree re74 re75 re78 propen bins distance w NSW1 1 37 11 1 0 1 0 1 0 0 9930.0460 0.6387699 4 0.6387699 NSW2 1 22 9 0 1 0 1 0 0 3595.8940 0.2246342 3 0.2246342 NSW3 1 30 12 1 0 0 0 0 0 24909.4500 0.6782439 5 0.6782439 NSW4 1 27 11 1 0 0 1 0 0 7506.1460 0.7763241 5 0.7763241 NSW5 1 33 8 1 0 0 1 0 0 289.7899 0.7016387 5 0.7016387 NSW6 1 22 9 1 0 0 1 0 0 4056.4940 0.6990699 5 0.6990699 > dim(m2ful1.dat) [1] 614 15 > head(m2ful1.dat) treat age educ black hispan married nodegree re74 re75 re78 propen bins distance w NSW1 1 37 11 1 0 1 1 0 0 9930.0460 0.6387699 4 0.6387699 NSW2 1 22 9 0 1 0 1 0 0 3595.8940 0.2246342 3 0.2246342 NSW3 1 30 12 1 0 0 0 0 0 0 0 24909.4500 0.6782439 5 0.6782439</pre>	eights 1 1 1 1 1 1 eights 1 1
<pre>bined(m2full.dat) treat age educ black hispan married nodegree re74 re75 re78 propen bins distance w NSW1 1 37 11 1 0 1 1 0 0 9930.0460 0.6387699 4 0.6387699 NSW2 1 22 9 0 1 0 1 0 0 3595.8940 0.2246342 3 0.2246342 NSW3 1 30 12 1 0 0 0 0 0 24909.4500 0.6782439 5 0.6782439 NSW4 1 27 11 1 0 0 1 0 0 7506.1460 0.7763241 5 0.7763241 NSW5 1 33 8 1 0 0 1 0 0 289.7899 0.7016387 5 0.7016387 NSW6 1 22 9 1 0 0 1 0 0 4056.4940 0.6990699 5 0.6990699 > dim(m2full.dat) [1] 614 15 > head(m2full.dat) treat age educ black hispan married nodegree re74 re75 re78 propen bins distance w NSW1 1 37 11 1 0 1 1 0 0 9930.0460 0.6387699 4 0.6387699 NSW2 1 22 9 0 1 0 1 0 0 3595.8940 0.2246342 3 0.2246342 NSW3 1 30 12 1 0 0 0 1 0 0 3595.8940 0.2246342 3 0.2246342 NSW3 1 30 12 1 0 0 0 0 0 0 0 24909.4500 0.6782439 5 0.6782439 NSW4 1 27 11 1 0 0 1 0 0 7506.1460 0.7763241 5 0.7763241 NSW3 1 30 12 1 0 0 0 0 0 0 0 0 24909.4500 0.6782439 5 0.6782439 NSW4 1 27 11 1 0 0 1 0 0 7506.1460 0.7763241 5 0.7763241 NSW4 1 27 11 1 0 0 1 0 0 7506.1460 0.7763241 5 0.7763241 NSW4 1 27 11 1 0 0 1 0 0 1 0 0 7506.1460 0.7763241 5 0.7763241 NSW4 1 27 11 1 0 0 1 1 0 0 7506.1460 0.7763241 5 0.7763241 NSW4 1 27 11 1 0 0 1 1 0 0 7506.1460 0.7763241 5 0.7763241 NSW4 1 27 11 1 0 0 0 1 0 0 7506.1460 0.7763241 5 0.7763241 NSW4 1 27 11 1 0 0 0 1 0 0 7506.1460 0.7763241 5 0.7763241 NSW4 1 27 11 1 0 0 0 1 0 0 7506.1460 0.7763241 5 0.7763241 NSW4 1 27 11 1 0 0 0 1 0 0 7506.1460 0.7763241 5 0.7763241 NSW4 1 27 11 1 0 0 0 1 0 0 7506.1460 0.7763241 5 0.7763241 NSW4 1 27 11 1 0 0 0 1 0 0 7506.1460 0.7763241 5 0.7763241 NSW4 1 27 11 1 0 0 0 1 0 0 7506.1460 0.7763241 5 0.7763241 NSW4 1 27 11 1 0 0 0 1 0 0 7506.1460 0.7763241 5 0.7763241 NSW4 1 27 11 1 0 0 0 1 0 0 7506.1460 0.7763241 5 0.7763241 NSW4 1 27 11 0 0 0 0 1 0 0 7506.1460 0.7763241 5 0.7763241 NSW4 1 27 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</pre>	eights 1 1 1 1 1 1 eights 1 1 1
<pre> head(m2full.dat) treat age educ black hispan married nodegree re74 re75 re78 propen bins distance w NSW1 1 37 11 1 0 1 1 0 0 9930.0460 0.6387699 4 0.6387699 NSW2 1 22 9 0 1 0 1 0 1 0 0 3595.8940 0.2246342 3 0.2246342 NSW3 1 30 12 1 0 0 0 0 0 0 24909.4500 0.6782439 5 0.6782439 NSW4 1 27 11 1 0 0 1 0 0 7506.1460 0.7763241 5 0.7763241 NSW5 1 33 8 1 0 0 1 0 0 289.7899 0.7016387 5 0.7016387 NSW6 1 22 9 1 0 0 1 0 0 4056.4940 0.6990699 5 0.6990699 > dim(m2full.dat) [1] 614 15 > head(m2full.dat) treat age educ black hispan married nodegree re74 re75 re78 propen bins distance w NSW1 1 37 11 1 0 1 1 0 0 9930.0460 0.6387699 4 0.6387699 NSW2 1 22 9 0 1 0 1 0 0 3595.8940 0.2246342 3 0.2246342 NSW3 1 30 12 1 0 0 1 0 0 3595.8940 0.2246342 3 0.2246342 NSW3 1 30 12 1 0 0 1 0 0 24909.4500 0.6782439 5 0.6782439 NSW4 1 27 11 1 0 0 1 0 0 24909.4500 0.6782439 5 0.6782439 NSW4 1 27 11 1 0 0 1 0 0 24909.4500 0.6782439 5 0.6782439 NSW4 1 27 11 1 0 0 1 0 0 0 0 0 0 0 0 0 0.24909.4500 0.6782439 5 0.6782439 NSW4 1 27 11 0 0 0 1 0 0 0 0 0 0 0 0.6782439 5 0.6782439 NSW4 1 27 11 0 0 1 0 0 1 0 0 7506.1460 0.7763241 5 0.7763241 NSW3 1 33 8 1 0 0 1 0 0 1 0 0 7506.1460 0.7763241 5 0.7763241 NSW5 1 33 8 1 0 0 1 0 0 1 0 0 7506.1460 0.7763245 NSW4 1 27 11 0 0 0 1 0 0 6 0.6987699 5 0.6698669 NSW4 1 27 11 0 0 0 1 0 0 6 0.6987699 5 0.6698669 NSW4 1 27 11 0 0 0 1 0 0 6 0.6987699 5 0.6698669 NSW4 1 27 11 0 0 0 1 0 0 6 0.6987699 5 0.6698669 NSW4 1 27 11 0 0 0 1 0 0 6 0.6987699 5 0.6698669 NSW4 1 27 11 0 0 0 1 0 0 6 0.6987699 5 0.6698669 NSW4 1 27 11 0 0 0 1 0 0 6 0.6987699 5 0.6698669 NSW4 1 27 11 0 0 0 1 0 0 6 0.6987699 5 0.6698669 NSW4 1 27 11 0 0 0 1 0 0 6 0.6987699 5 0.6698669 NSW4 1 27 11 0 0 0 1 0 0 6 0.6987699 5 0.6698669 NSW4 1 27 11 0 0 0 1 0 0 6 0.6987699 5 0.6698669 NSW4 1 27 11 0 0 0 1 0 0 6 0.6987699 5 0.6698669 NSW4 1 27 11 0 0 0 1 0 0 6 0.6987699 5 0.6698669 NSW4 1 27 11 0 0 0 0 1 0 0 6 0.6987699 5 0.6698669 NSW4 1 27 11 0 0 0 0 1 0 0 6 0.6987699 5 0.6698669 NSW4 1 27 11 0 0 0 0 1 0 0 6 0.6987699 5 0.6698669 NSW4 1 27 11</pre>	eights 1 1 1 1 1 1 1 1 1 1 1
<pre>b head(m21011.dat) treat age educ black hispan married nodegree re74 re75 re78 propen bins distance w NSW1 1 37 11 1 0 1 0 0 9930.0460 0.6387699 4 0.6387699 NSW2 1 22 9 0 1 0 1 0 0 3595.8940 0.2246342 3 0.2246342 NSW3 1 30 12 1 0 0 0 0 0 24909.4500 0.6782439 5 0.6782439 NSW4 1 27 11 1 0 0 1 0 0 7506.1460 0.7763241 5 0.7763241 NSW5 1 33 8 1 0 0 1 0 0 289.7899 0.7016387 5 0.7016387 NSW6 1 22 9 1 0 0 1 0 0 4056.4940 0.6990699 5 0.6990699 > dim(m2full.dat) [1] 614 15 > head(m2full.dat) [1] 614 15 > head(m2full.dat) NSW1 1 37 11 1 0 1 1 0 0 9930.0460 0.6387699 4 0.6387699 NSW2 1 22 9 0 1 0 1 0 0 3595.8940 0.2246342 3 0.2246342 NSW3 1 30 12 1 0 0 0 0 0 0 24909.4500 0.6782439 5 0.6782439 NSW2 1 22 9 0 1 0 1 0 0 0 0 0 0 24909.4500 0.6782439 5 0.6782439 NSW3 1 30 12 1 0 0 1 0 0 7506.1460 0.7763241 5 0.7763241 NSW3 1 30 12 1 0 0 1 0 0 289.7899 0.7016387 5 0.7016387 NSW4 1 27 11 1 0 0 1 0 0 3595.8940 0.2246342 3 0.2246342 NSW3 1 30 12 1 0 0 1 0 0 24909.4500 0.6782439 5 0.6782439 NSW4 1 27 11 1 0 0 1 0 0 10 0 7506.1460 0.7763241 5 0.7763241 NSW5 1 33 8 1 0 0 1 0 0 289.7899 0.7016387 5 0.7016387 NSW6 1 22 9 1 0 0 1 0 0 289.7899 0.7016387 5 0.7016387 NSW6 1 22 9 1 0 0 1 0 0 4056.4940 0.6990699 5 0.6990699 > attach(m2full.dat)</pre>	eights 1 1 1 1 1 1 1 1 1 1 1 1 1
<pre>bined(m2full.dut) treat age educ black hispan married nodegree re74 re75 re78 propen bins distance w NSW1 1 37 11 1 0 1 1 0 0 9930.0460 0.6387699 4 0.6387699 NSW2 1 22 9 0 1 0 1 0 0 3595.8940 0.2246342 3 0.2246342 NSW3 1 30 12 1 0 0 0 0 0 0 24909.4500 0.6782439 5 0.6782439 NSW4 1 27 11 1 0 0 1 0 0 7506.1460 0.7763241 5 0.7763241 NSW5 1 33 8 1 0 0 1 0 0 289.7899 0.7016387 5 0.7016387 NSW6 1 22 9 1 0 0 1 0 0 4056.4940 0.6990699 5 0.6990699 > dim(m2full.dat) [1] 614 15 > head(m2full.dat) treat age educ black hispan married nodegree re74 re75 re78 propen bins distance w NSW1 1 37 11 1 0 1 1 0 0 9930.0460 0.6387699 4 0.6387699 NSW2 1 22 9 0 1 0 1 0 0 3595.8940 0.2246342 3 0.2246342 NSW3 1 30 12 1 0 0 0 0 0 0 24909.4500 0.6782439 5 0.6782439 NSW4 1 27 11 1 0 1 0 1 0 0 3595.8940 0.2246342 3 0.2246342 NSW3 1 30 12 1 0 0 0 0 0 0 24909.4500 0.6782439 5 0.6782439 NSW4 1 27 11 1 0 0 1 0 0 3595.8940 0.2246342 5 0.6782439 NSW4 1 27 11 1 0 0 1 0 0 1 0 0 7506.1460 0.7763241 5 0.7763241 NSW5 1 33 8 1 0 0 1 0 0 289.7899 0.7016387 5 0.7016387 NSW6 1 22 9 1 0 0 1 0 0 4056.4940 0.6990699 5 0.6990699 > attach(m2full.dat) ></pre>	eights 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
<pre>lead(m2full.dat) [1] 614 15 lead(m2full.dat) [1] 614 15 lead(m2full.dat) [1] 614 15 lead(m2full.dat) [1] 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0</pre>	eights 1 1 1 1 1 1 1 1 1 1 1 1 1
<pre>bedu(m2full.dat) treat age educ black hispan married nodegree re74 re75 re78 propen bins distance w NSW1 1 37 11 1 0 1 0 0 3595.8940 0.2246342 3 0.2246342 NSW3 1 30 12 1 0 0 0 0 0 24909.4500 0.6782439 5 0.6782439 NSW4 1 27 11 1 0 0 1 0 0 7506.1460 0.7763241 5 0.7763241 NSW5 1 33 8 1 0 0 1 0 0 289.7899 0.7016387 5 0.7016387 NSW6 1 22 9 1 0 0 1 0 0 4056.4940 0.6990699 5 0.6990699 > dim(m2full.dat) [1] 614 15 > head(m2full.dat) [1] 614 15 > head(m2full.dat) NSW3 1 30 12 1 0 1 1 0 0 9930.0460 0.6387699 4 0.6387699 NSW2 1 22 9 0 1 0 1 0 0 9930.0460 0.6387699 4 0.6387699 NSW2 1 22 9 0 1 0 1 0 0 3595.8940 0.2246342 3 0.2246342 NSW3 1 30 12 1 0 0 1 0 0 3595.8940 0.2246342 3 0.2246342 NSW3 1 30 12 1 0 0 1 0 0 7506.1460 0.7763241 5 0.7763241 NSW5 1 33 8 1 0 0 1 0 0 24909.4500 0.6782439 5 0.6782439 NSW4 1 27 11 1 0 0 1 0 0 7506.1460 0.7763241 5 0.7763241 NSW5 1 33 8 1 0 0 1 0 0 4056.4940 0.6990699 5 0.6990699 NSW2 1 22 9 1 0 0 1 0 0 0 0 0 0 24909.4500 0.6782439 5 0.6782439 NSW4 1 27 11 1 0 0 1 0 0 1506.1460 0.7763241 5 0.7763241 NSW5 1 33 8 1 0 0 1 0 0 289.7899 0.7016387 5 0.7016387 NSW6 1 22 9 1 0 0 1 0 0 4056.4940 0.6990699 5 0.6990699 > attach(m2full.dat) > # so you can see match.data appends 3 colums "distance" "weights" "subclass" to the original > table(m2full.dat\$subclass) #the 104 subclasses have various sizes 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 2 13 2 7 3 5 3 2 4 2 8 3 2 2 9 4 2 9 6 14 3 2 2 6 6</pre>	eights 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 25 26 3 4

71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96

Covariate Balance

from cobalt package, love.plot, see link

R version 3.5.3 (2019-03-11) -- "Great Truth" Copyright (C) 2019 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 (64-bit) # clean start 2019 > install.packages("optmatch") > install.packages("MatchIt") also installing the dependency 'Matching' > install.packages("cobalt") also installing the dependencies 'ggstance', 'backports' > library(optmatch) Loading required package: survival The optmatch package has an academic license. Enter relaxinfo() for more information. > library(MatchIt) > data(lalonde) > dim(lalonde) [1] 614 10 > library(cobalt) > head(lalonde) treat age educ black hispan married nodegree re74 re75 re78 NSW1 1 37 11 1 0 1 1 0 0 9930.0460 NSW2 1 22 9 0 1 0 1 0 0 3595.8940 NSW3 1 30 12 1 0 0 0 0 0 24909.4500 NSW4 1 27 11 1 0 0 1 0 0 7506.1460 NSW5 1 33 8 1 0 0 1 0 0 289.7899 NSW6 1 22 9 1 0 0 1 0 0 4056.4940 > #pick out matching vars (not treat or outcome) > covs <- subset(lalonde, select = -c(treat, re78))</pre> # try ?f.build from cobalt > m2full.out = matchit(f.build("treat", covs), data = lalonde, method = "full") Warning message: In optmatch::fullmatch(d, ...) : Without 'data' argument the order of the match is not guaranteed to be the same as your original data. > summary(m2full.out, standardize = T) # as we saw before Call: matchit(formula = f.build("treat", covs), data = lalonde, method = "full") Summary of balance for all data: Means Treated Means Control Std. Mean Diff. eCDF Med eCDF Mean eCDF Max distance 0.5774 0.1822 1.7941 0.3964 0.3774 0.6444 25.8162 28.0303 -0.3094 0.0827 0.0813 0.1577 age 10.3459 10.2354 0.0550 0.0228 0.0347 educ 0 1114 black 0.8432 0.2028 1.7568 0.3202 0.3202 0.6404 0.0595 0.1422 -0.3489 0.0414 0.0414 0.0827 hispan 0.1892 0.5128 -0.8241 0.1618 0.1618 0.3236 married nodegree 0.7081 0.5967 0.2443 0.0557 0.0557 0.1114 re74 2095.5737 5619.2365 -0.7211 0.2335 0.2248 0.4470 re75 1532.0553 2466.4844 -0.2903 0.1355 0.1342 0.2876 Summary of balance for matched data: Means Treated Means Control Std. Mean Diff. eCDF Med eCDF Mean eCDF Max distance 0.5774 0.5761 0.0060 0.0120 0.0132 0.0484 0.0610 0.0883 aqe 25.8162 24.6928 0.1570 0.3192 10.3459 10.3227 0.0116 0.0152 0.0238 0.0624 educ 0.8432 0.0236 0.0142 0.0142 0.0284 black 0.8347 0.0049 0.0016 0.0016 0.0032 hispan 0.0595 0.0583 0.1892 0.1285 0.1545 0.0318 0.0318 0.0636 married

				1		
nodegree re74 re75	0.7081 2095.5737 1532.0553	0.7040 2199.7126 1524.8362	0.0089 -0.0213 0.0022	0.0008 0.0140 0.0284	0.0008 0.0449 0.0573	0.0016 0.2288 0.1964
Percent Ba S distance age educ black hispan married nodegree re74 re75 Sample siz	lance Improveme td. Mean Diff. 99.6662 49.2583 78.9494 98.6582 98.5858 81.2495 96.3435 97.0446 99.2274 es:	ent: eCDF Med eCDF M 96.9725 96.5 26.2789 -8.5 33.2403 31.4 95.5656 95.5 96.1321 96.1 80.3480 80.3 98.5634 98.5 94.0052 80.0 79.0426 57.2	Mean eCDF Max 5015 92.4887 5456 -102.3750 4865 43.9713 5656 95.5656 1321 96.1321 3480 80.3480 5634 98.5634 98.5634 2989 31.7216			
All Matched Unmatched Discarded	429 185 429 185 0 0	5 5)				
<pre>> # same a # MatchIt > love.plo # the othe > bal.tab(Call matchit(f</pre>	s prior exs has a plot he t(bal.tab(m2ful r main cobalt f m2full.out) ormula = f.buil	ere's one that y l.out), thresho unction, works d("treat", cove	you may prefer old = .1) same as Match s), data = lal	It onde, metho	d = "full	")
Balance Me distance D age educ black hispan married nodegree re74 re75	asures Type Diff.Ac istance 0.006 Contin. 0.157 Contin. 0.011 Binary 0.008 Binary 0.000 Binary 0.006 Binary 0.006 Contin0.021 Contin. 0.002	1j 50 70 .6 36 .2 97 11 .3				
Effective Unadjusted Adjusted > # same a >	sample sizes Control Treate 429.000 18 53.329 18 s matchit summa	ed 35 <mark>35</mark> ary()				

Discard			0	0									
Discuit	lod		0	0									
	leu		0	0									
#### dc	<mark>b the</mark>	out	come r	e78 ana	lysis								
> m2ful	llvar	s.ou	t = ma	tchit(t:	reat ~ 1	ce74 + r	e75 + ea	duc +	blac	k + hispan	. + age + 1	married	+ nc
				_									
> m2ful	ll.da	it = 1	match.	data(m2:	fullvars	s.out)							
> head(m2fu	ill.d	at) odug b	laak hi		cried no	dogroo		co 7 5	x 079	diatona	o woight	a a.
UL NSW1	.eal 1	age (11		span mai 0	1 10 1	uegree i 1	0	1e75 0	9930 0460		a a	5 SL 1
NSW1	1	22	9	0	1	0	1	0	0	3595.8940	0.224634	2	1
NSW3	1	30	12	1	0	0	0	0 0	0	24909.4500	0.678243	9	1
NSW4	1	27	11	1	0	0	1	0	0	7506.1460	0.776324	1	1
NSW5	1	33	8	1	0	0	1	0	0	289.7899	0.701638	7	1
NSW6	1	22	9	1	0	0	1	0	0	4056.4940	0.699069	9	1
> libra	ary(1	.me4)	_			-		_	_				_
> mfull	L.Ime	r =	Imer(r	e78 ~ t:	reat +	(1 + tre	at subc.	lass),	, dat	a = m2full	.dat) # 1	ike for	the
> Summa Tipoor	ury(m miwo		·Imer)			rModul							
Linear	mixe	20 11100			AT L.TWE	ermou'j	~ ~ \						
Formula	a: re	e/8 ~	treat	+ (1 +	treat	SUDCIA	ss)						
Data	1: IIIZ	TUTT	.uat										
DEM					1000								
REML Cr	riter	ion a	at con	vergence	e: 1263.	3.5							
Scaled	resı	.dua1	s:										
Mim		10	Madi	~ ~	20	Morr							
Min 1 5267	1 7 0	1Q	Medi	an 51 0 5	3Q	Max							
Min —1.5267	n 7 -0.	1Q 7497	Medi -0.28	an 51 0.5	3Q 165 7.4	Max 1616							
Min -1.5267 Bandom	n 7 -0.	1Q 7497	Medi -0.28	an 51 0.5	3Q 165 7.4	Max 4616							
Mir. -1.5267 Random Groups	n 7 -0. effe	1Q 7497 ects:	Medi -0.28	an 51 0.53	30 165 7.4	Max 1616	r						
Mir -1.5267 Random Groups subcla	n 7 -0. effe 5 N	1Q 7497 ects: Iame	Media -0.28	an 51 0.5 Varian 40278	3Q 165 7.4 ce Std.I	Max 1616 Dev. Cor	r						
Mir -1.5267 Random Groups subcla	on 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1Q 7497 ects: Iame Inte	Medi -0.28 rcept)	an 51 0.5 Varian 40278 38100	3Q 165 7.4 ce Std.I 97 2007 81 1952	Max 1616 Dev. Cor	r 89						
Mir -1.5267 Random Groups subcla Residu	n effe s N ass (t	1Q 7497 ects: Iame Inte: reat	Medi -0.28 rcept)	an 51 0.5 Varian 40278 38100 511039	3Q 165 7.4 ce Std.1 97 2007 81 1952 06 7149	Max 1616 Dev. Cor -0.	r 89						
Mir. -1.5267 Random Groups subcla Residu Number	n effe s N ass (t aal of o	1Q 7497 ects: ame Inte: reat	Medi -0.28 rcept) 614, g	an 51 0.5 Varian 40278 38100 511039 roups:	3 <u>0</u> 165 7.4 ce Std.1 97 2007 81 1952 06 7149 subclas	Max 4616 Dev. Cor -0. 35, 104	r 89						
Mir -1.5267 Random Groups subcla Residu Number	effe s N ass (t al	1Q 7497 ects: ame Inte: reat	Medi -0.28 rcept) 614, g	an 51 0.5 Variand 40278 38100 511039 roups:	3Q 165 7.4 ce Std.I 97 2007 81 1952 06 7149 subclas	Max 4616 Dev. Cor -0. 55, 104	r 89						
Mir -1.5267 Random Groups subcla Residu Number Fixed e	effe s N ass (t of o effec	1Q 7497 ects: Iame Inte: reat obs: ets:	Medi -0.28 rcept) 614, g	an 51 0.5 Varian 40278 38100 511039 roups:	3Q 165 7.4 ce Std.I 97 2007 81 1952 06 7149 (subclas	Max 4616 Dev. Cor -0. 55, 104	r 89						
Mir -1.5267 Random Groups subcla Residu Number Fixed e	effe s N ass (of o effec	1Q 7497 ects: ame Inte reat obs: ets: Est	Medi -0.28 rcept) 614, g	an 51 0.5 Varian 40278 38100 511039 roups: Std. Er:	3Q 165 7.4 ce Std.I 97 2007 81 1952 06 7149 subclas	Max 4616 Dev. Cor -0. 55, 104	r 89						
Mir -1.5267 Random Groups subcla Residu Number Fixed e (Interc	effe s N ass (of o effec cept)	1Q 7497 ects: Iame Inte: reat bbs: ets: Est: 5	Medi -0.28 rcept) 614, g imate 862.9	an 51 0.5 Varian 40278 38100 511039 roups: Std. Er: 50	3Q 165 7.4 ce Std.I 97 2007 81 1952 06 7149 Subclas ror t va 7.8 11	Max 4616 Dev. Cor -0. 55, 104 alue .546	r 89						
Mir -1.5267 Random Groups subcla Residu Number Fixed e (Interc treat	n effe s N ass (tal of o effec cept)	1Q 7497 ects: Iame Inte: reat ebs: Est: 5	Medi -0.28 rcept) 614, g imate 862.9 504.5	an 51 0.5 Varian 40278 38100 511039 roups: Std. Er: 50 73	3Q 165 7.4 ce Std.I 97 2007 81 1952 06 7149 (subclas ror t va 7.8 11 6.2 0	Max 4616 Dev. Cor -0. 55, 104 alue .546 .685	r 89 ## about	the :	same	e as seen i	<mark>n base se</mark> t	ction 38	<u>4</u> (9
Mir -1.5267 Random Groups subcla Residu Number Fixed e (Interc treat	effe s N ass (of o effec cept)	1Q 7497 ects: Iame Inte: reat bbs: Est: 5	Medi -0.28 rcept) 614, g imate 862.9 504.5	an 51 0.5 Variand 40278 38100 511039 roups: Std. Er: 50 73	3Q 165 7.4 ce Std.I 97 2007 81 1952 06 7149 subclas ror t va 7.8 11.6 6.2 0.	Max 4616 Dev. Cor -0. 55, 104 alue 546 .685	r 89 <mark>## about</mark>	the	same	e as seen i	n base se	ction 38	<mark>4 (</mark> 9
Mir -1.5267 Random Groups subcla Residu Number Fixed e (Interc treat Correla	effe Nass (tal of o cept)	1Q 7497 ects: ame Inte: reat ets: Est: 5; () ()	Medi -0.28 rcept) 614, g imate 862.9 504.5 Fixed	an 51 0.5 Varian 40278 38100 511039 roups: Std. Er: 50 73 Effects	3Q 165 7.4 ce Std.I 97 2007 81 1952 06 7149 (subclas ror t va 7.8 11. 6.2 0.	Max 4616 Dev. Cor -0. 55, 104 alue .546 .685	r 89 <mark>## about</mark>	: the	same	e as seen i	n base se	ction 38	<mark>4 (</mark> 9
Mir -1.5267 Random Groups subcla Residu Number Fixed e (Interc treat Correla	effe s N ass (tal of o cept) ation	10 7497 ects: Iame Inte: reat ets: Est: 5	Medi -0.28 rcept) 614, g imate 862.9 504.5 Fixed	an 51 0.5 Varian 40278 38100 511039 roups: Std. Er: 50 73 Effects	3Q 165 7.4 ce Std.I 97 2007 81 1952 06 7149 (subclass ror t va 7.8 11 6.2 0,	Max 4616 Dev. Cor -0. ss, 104 alue .546 .685	r 89 ## about	the :	same	e as seen i	<mark>n base se</mark>	ction 38	4 (<u>S</u>
Mir -1.5267 Random Groups subcla Residu Number Fixed e (Interc treat (treat - treat -	effe s N ass (tal of o effec cept) ation (Intr -0.67	10 7497 ects: Iame Inte: reat bbs: Est: 5 (Medi -0.28 rcept) 614, g imate 862.9 504.5 Fixed	an 51 0.5 Varian 40278 38100 511039 roups: Std. Er: 50 730 Effects	3Q 165 7.4 ce Std.I 97 2007 81 1952 06 7149 (subclass ror t va 7.8 11 6.2 0.	Max 4616 Dev. Cor -0. 55, 104 alue .546 .685	r 89 <mark>## about</mark>	the the	same	e as seen i	n base se	ction 38	<mark>4 (</mark> 5
Mir -1.5267 Random Groups subcla Residu Number Fixed e (Interc treat Correla (treat - > confi	effe s N ass (of o effec cept) ation (Intr -0.67	1Q 7497 ects: Iame Inte: reat ets: Est: 5; () 9 full	Medi -0.28 rcept) 614, g imate 862.9 504.5 Fixed 1 .lmer)	an 51 0.5 Varian 40278 38100 511039 roups: Std. Er: 50 73 Effects fidence	3Q 165 7.4 ce Std.I 97 2007 81 1952 06 7149 (subclas ror t va 7.8 11 6.2 0.	Max 4616 Dev. Cor -0. 55, 104 alue .546 .685	r 89 ## about ook a wi	: the	same	e as seen i	<mark>n base se</mark>	ction 38	<mark>4 (</mark> 9
Mir. -1.5267 Random Groups subcla Residu Number Fixed e (Interc treat Correla (treat - > confi Computi	effe s N ass (tal of o effec cept) ation (Intr -0.67 int(m ing p	1Q 7497 ects: Iame Inte: reat ets: Est: 5 9 full profil	Medi -0.28 rcept) 614, g imate 8 862.9 504.5 Fixed 1 .lmer) le con	an 51 0.5 Varian 40278 38100 511039 roups: Std. Er: 50 73 Effects fidence	3Q 165 7.4 ce Std.I 97 2007 81 1952 06 7149 (subclas ror t va 7.8 11.6 6.2 0.4 :	Max 4616 Dev. Cor -0. 55, 104 alue .546 .685 (# this t als	r 89 ## about ook a wi	: the	same	e as seen i	.n base se	ction 38	<mark>4 (</mark> 5
Mir. -1.5267 Random Groups subcla Residu Number Fixed e (Interc treat Correla (treat - > confi Computi	effe s N ass (tal of o effec cept) ation (Intr -0.67 int(m ing p	1Q 7497 ects: Iame Inte: reat ets: Est: 5 9 full profi.	Medi -0.28 rcept) 614, g imate 862.9 504.5 Fixed 1 .lmer) le con 2.5 %	an 51 0.5 Varian 40278 38100 511039 roups: Std. Er: 50 73 Effects fidence 97.5 3011 0	3Q 165 7.4 ce Std.I 97 2007 81 1952 06 7149 (subclas ror t va 7.8 11 6.2 0. :	Max 4616 Dev. Cor -0. 55, 104 alue .546 .685 4 this t	r 89 <mark>## about</mark> ook a wł	the nile	same	e as seen i	.n base se	ction 38	<mark>4 (</mark> 9
Mir. -1.5267 Random Groups subcla Residu Number Fixed e (Interc treat Correla (treat - > confi Computi .sig01	effe s N ass (tal of o effec cept) ation (Intr -0.67 int(m	1Q 7497 ects: Iame Inte: reat bbs: Est: 5; () () () () () () () () () () () () ()	Medi -0.28 rcept) 614, g imate 862.9 504.5 Fixed 1 .lmer) le con 2.5 % 6.8647	an 51 0.5 Varian 40278 38100 511039 roups: Std. Er: 50 73 Effects fidence 97.5 3011.9 1 0	3Q 165 7.4 ce Std.I 97 2007 81 1952 06 7149 (subclass ror t va 7.8 11 6.2 0. : interva % 68 00	Max 4616 Dev. Cor -0. 55, 104 alue .546 .685 4 this t als	r 89 <mark>## about</mark> ook a wł	the the	same	e as seen i	n base se	ction 38	<mark>4 (</mark> 5
Mir -1.5267 Random Groups subcla Residu Number Fixed e (Intercondering) Correla (treat - > confi Computi .sig01 .sig02 sig02	effe Nass (tal of o effec cept) ation (Intr -0.67 int(m	10 7497 ects: Iame Inte: reat bs: Est: 5 9 full profi 1210	Medi -0.28 rcept) 614, g imate 862.9 504.5 Fixed .lmer) le con 2.5 % 6.8647 1.0000	an 51 0.5 Varian 40278 38100 511039 roups: Std. Er: 50 73 Effects fidence 97.5 3011.9 1.0	3Q 165 7.4 ce Std.I 97 2007 81 1952 06 7149 (subclass ror t va 7.8 11 6.2 0 : interva % 68 00 of	Max 4616 Dev. Cor -0. 38, 104 alue .546 .685 4 this t als	r 89 ## about ook a wł	the nile	same	e as seen i	<u>n base se</u>	ction 38	<u>4</u> (<u>9</u>
Mir -1.5267 Random Groups subcla Residu Number Fixed e (Interco treat) Correla (treat - > confi Computi .sig01 .sig02 .sig03 sigma	effe Nass (tal of o effec cept) ation (Intr -0.67 int(m	10 7497 ects: Iame Inte: reat ets: Est: 59 full profi 1210 -	Medi -0.28 rcept) 614, g imate 862.9 504.5 Fixed .lmer) le con 2.5 % 6.8647 1.0000 0.0000	an 51 0.5 Varian 40278 38100 511039 roups: Std. Er: 50 73 Effects fidence 97.5 3011.9 1.00 11	3Q 165 7.4 ce Std.I 97 2007 81 1952 06 7149 (subclass ror t va 7.8 11. 6.2 0. : interva % 68 00 nf 14	Max 4616 Dev. Cor -0. 55, 104 alue .546 .685 # this t als	r 89 ## about ook a wi	the nile	same	e as seen i	n base se	ction 38	<u>4</u> (<u>5</u>
Mir -1.5267 Random Groups subcla Residu Number Fixed e (Interc treat Correla (treat - > confi Computi .sig01 .sig02 .sig03 .sigma	effe s N ass (tal of o effec cept) ation (Intr -0.67 int(m ing p	10 7497 ects: Iame Inte: reat ets: Est: 53 (1) 9 ifull profi 121 (674 (480)	Medi -0.28 rcept) 614, g imate 862.9 504.5 Fixed .lmer) le con 2.5 % 6.8647 1.0000 0.0000 0.8624 7.1941	an 51 0.5 Varian 40278 38100 511039 roups: Std. Er: 50 73 Effects fidence 97.5 3011.9 1.0 1.0 1.0 581.4 6873 7	3Q 165 7.4 ce Std.I 97 2007 81 1952 06 7149 (subclass ror t va 7.8 11 6.2 0. : interva % 68 00 nf 14 22	Max 4616 Dev. Cor -0. 55, 104 alue 546 .685 (4 this t als	r 89 ## about ook a wl	the nile	same	as seen i	n base se	ction 38	<mark>4 (</mark> 5
Mir -1.5267 Random Groups subcla Residu Number Fixed e (Interc treat Correla (treat - > confi Computi .sig01 .sig02 .sig03 .sigma (Interc treat	effe s N ass (of o effec effec cept) ation (Intr -0.67 int(m ing p	10 7497 ects: Iame Inte: reat ets: Est: 59 ifull rofi: 1210 674 480 -98	Medi -0.28 rcept) 614, g imate 862.9 504.5 Fixed 1 .lmer) le con 2.5 % 6.8647 1.0000 0.0000 0.8624 7.1941 5.7685	an 51 0.5 Varian 40278 38100 511039 roups: Std. Er: 50 73 Effects fidence 97.5 3011.9 1.00 1.	3Q 165 7.4 ce Std.I 97 2007 81 1952 06 7149 (subclass ror t va 7.8 11 6.2 0 : interva % 68 00 nf 14 22 73	Max 4616 Dev. Cor -0. 55, 104 alue 546 .685 4 this t als	r 89 ## about ook a wi	the nile	same	e as seen i	<mark>n base se</mark>	ction 38	<mark>4 (</mark> ⊆

Weck 1 Computing Corner

Stat 266 CHPR 290

> data(lalon	de) # in Ma	tchIt package	e, help(lalonde)				
[1] 614 10	e) > attac		6	(+)				
> table(trea	t) Marn	ing (tra	ut mc	n				
treat	/	5						
0 1								
$\geq head(lalon)$	de)					outcon	10	
treat a	ge educ bla	ck hispan ma	rried noo	degree re	74 re75	re78		
NSW1 1	37 11	1 0	1	1	0 0	9930.0460		
NSW2 1	22 9	0 1	0	1	0 0	3595.8940		
NSW3 I NGWA 1	30 IZ 27 11	1 0	0	0		7506 1460		
NSW5 1	33 8	1 0	0	1	0 0	289.7899		
NSW6 1	22 9	1 0	0	1	0 0	4056.4940		
############ > tapply(re7 0	##### prel 8, treat, m 1	im compare g edian)	roups on	outcome	measure			
4975.505 423	2.309			cont	vol n	45	(, 201)	
> t.test(re7	8 ~ treat) h Two Sampl			h	ayer	wayes	(VC 19)	
data: re78	by treat				91	5		
t = 0.93773,	df = 326.4	1, p-value =	0.3491					
alternative	hypothesis:	true differ	ence in 1	means is :	not equal	l to O		
sample estim	ates: mean	in group 0 m	ean in g	1907.244				
bumpie ebeim		6984.170	63	49.144				
<pre>> # as we se > # a whole > # equival > ancova.la > summary(a Call: lm(for Coefficients (Intercept) treat age educ black hispan married nodegree re74 re75 </pre>	e the socia bunch of ot ent to anal londe = lm(ncova.lalon mula = re78 : Estimate 6.651e+01 1.548e+03 1.298e+01 4.039e+02 -1.241e+03 4.989e+02 4.066e+02 2.598e+02 2.964e-01 2.315e-01	<pre>1 science, 1 her variable ysis of cova re78 ~ trea ide) 3 ~ treat + a Std. Error t 2.437e+03 7.813e+02 3.249e+01 1.589e+02 7.688e+02 9.419e+02 6.955e+02 8.474e+02 5.827e-02 1.046e-01</pre>	ife scie s to "co riance b t + age ge + edu value P 0.027 1.982 0.399 2.542 -1.614 0.530 0.585 0.307 5.086 4 2.213	nce pract ntrol" fo y whateve + educ + c + black r(> t) 0.9782 0.0480 * 0.6897 0.0113 * 0.1071 0.5966 0.5590 0.7593 .89e-07 * 0.0273 *	ice is to r self-se r name black + h + hispan	o put in the election, no: nispan + mar: n + married	treatment var: nequivalence ef ried + nodegree + nodegree + n	Lable and c. + re74 + re75) re74 + re75)
> # so treat	ment is sig	nificantly h	elpful ?	? E.	isti	asproc	ach, m	1490
*****	Begin match	ning analysis	• Ouinti	le Subcla	v jv (ion with Pro	pensity Scores	
## original	Rosenbaum-F	Rubin, cardia	c; Rubin	breast c	ancer			
> # now do t	the logistic	regression	that com	putes pro	pensity : en as di	scores fi	E 109/5	rcgression
> glm.p = g	jlm(treat -	age + educ	+ black	+ hispan	+ married data = 1	d + nodegree alonde, fami	+ re74 + re75 ly = binomial)	,
<pre>> summary(g Call: glm(fc nodegree Coefficients</pre>	gim.p) prmula = tre e + re74 + 1 5:	eat ~ age + e ce75, family	duc + bl = binomi	ack + his al, data	pan + ma: = lalonde	rried + e)		
	Estimate	Std. Error z	value P	r(> z)				
(Intercept)	-4.729e+00	1.017e+00	-4.649 3	.33e-06 *	**			
age	1.578e-02	1.358e-02	1.162	0.24521				
black	3.065e+00	2.865e-01	10.699	< 2e-16 *	**			

Stat 266 2.311 0.02084 * hispan 9.836e-01 4.257e-01 -8.321e-01 2.903e-01 -2.866 0.00415 ** married 2.095 0.03620 * nodegree 7.073e-01 3.377e-01 -7.178e-05 2.875e-05 -2.497 0.01253 * re74 5.345e-05 4.635e-05 1.153 0.24884 re75 > propen = fitted(glm.p) # now we have the propensity scores > quantile(propen) # overall distrib 25% 75% 100% 0% 50% 0.009080193 0.048536484 0.120676493 0.638715991 0.853152844 # look at overlap via 5-number summary (or side-by-side boxplots) not good overlap, > tapply(propen, treat, quantile) \$ 0 25% 50% 75% 100% 0% 0.009080193 0.038880745 0.075849106 0.195135746 0.789172834 \$1 25% 50% 75% 100% 08 0.02495179 0.52646352 0.65368426 0.72659995 0.85315284 > # as we are fitting prob(treat = 1) fits for those in treatment group will be larger, # we need good overlap for matching purposes > detach(lalonde) > lalonde\$propen = propen > attach(lalonde) > boxplot(propen ~ treat) #gives side-by-side boxplots, you can add labels, not wonderful overlap #### looking at overlap, histograms p1 = propen[treat == 1] > p0 = propen[treat == 0] > hist(p0,col=rgb(0,0,1,0.7),xlim=range(c(p0,p1)))> hist(p1,col=rgb(1,0,0,0.7),add=T) # superimposed propensity histograms, like Ben Hansen SAT, control is blue, treatment is red, overlap close to perfect Stanford Cardinal red > hist(p0, breaks = "FD", col=rgb(0,0,1,0.7),xlim=range(c(p0,p1))) > hist(p1, breaks = "FD", col=rgb(1,0,0,0.7),add=T) # Freedman-Diaconis breakpoints ### make quintiles of propensity distribution to to subclassification/strata matching pbin = cut(propen, quantile(propen, seq(0, 1, 1/5)), include.lowest = TRUE, labels = FALSE)> detach(lalonde) > lalonde\$bins = pbin > attach(lalonde) a phin a classification for each sobject table(pbin, treat) #each bin of size 122,123 treat pbin 0 1 1 122 1 2 116 7 3 101 21 4 53 71 5 37 85 ##### examples of checking balance (more to come) > tapply(age, list(bins, treat), median) 0 1 not great see picture 1 29 27 2 26 23 3 20 23 4 24 25 5 19 25 > ### install.packages("PSAgraphics") > library(PSAgraphics) > box.psa(age, treat, bins) # see picture > tapply(re78, list(bins, treat), mean) # mean diffs in re78 stratified by propensity quintile 0 1 1 10467.064 0.000 5796.548 7919.316 2 3 6043.316 9210.726 4 4977.401 5819.143 5 4666.221 6030.258 > # direction of mean diffs favors treatment, job training

week1 p2

> # contrast that with the comparison ignoring any concerns about self-selection (selection bias),

```
Weeks 1 p3
Stat 266
         effect in the other direction, but not significant
    >
      tapply(re78, treat, mean)
          0
                   1
    6984.170 6349.144
   > ###### can do t-tests by subclassification (strata) e.g. for the 3 upper quintiles
   > library(lme4)
   > propen.lmer = lmer(re78 ~ treat + (1 + treat|bins), data = lalonde)
   > summary(propen.lmer)
   Linear mixed model fit by REML ['lmerMod']
   Formula: re78 ~ treat + (1 + treat | bins)
                                              Data: lalonde
   Random effects:
    Groups
             Name
                        Variance Std.Dev. Corr
    bins
             (Intercept) 5208943 2282
                         2069963 1439
             treat
                                         -1.00
    Residual
                        52597981 7252
   Number of obs: 614, groups: bins, 5
   Fixed effects:
               Estimate Std. Error t value
    (Intercept) 6434.2
                         1090.2
                                    5.902
->treat
                  385.7
                            950.8
                                    0.406
   # so here we have an overall estimate of the effect of the treat on re78 of positive $386, but
   # far from significant. Much smaller point estimate than in some of the individual strata
   > confint(propen.lmer) # bombs
  p> confint(propen.lmer, method = "boot", nsim = 1000, boot.type = "perc")
   Computing bootstrap confidence intervals ...
                    2.5 %
                            97.5 %
   .sig01
                414.81230 4084.578
   .sig02
                 -1.00000
                             1.000
   .sig03
                 54.74858 3644.981
   .sigma
               6846.49101 7654.434
   (Intercept)
              4432.91940 8695.198
   treat
              -1681.75647 2565.802 some bootstrap runs failed (7/1000)
                  Second, another approach
   > m2full.out = matchit(treat ~ re74 + re75 + educ + black + hispan + age + married + nodegree,
                                                              data = lalonde, method = "full")
   >
      summary(m2full.out)
   Call: matchit(formula = treat ~ re74 + re75 + educ + black + hispan +
       age + married + nodegree, data = lalonde, method = "full")
   Summary of balance for all data:
           Means Treated Means Control Mean Diff
                                                  eQQ Med eQQ Mean
                                                                     eQQ Max
   distance
                  0.5774
                               0.1822
                                       0.3952
                                                  0.5176
                                                             0.3955
                                                                      0.5966
   re74
               2095.5737
                            5619.2365 -3523.6628 2425.5720 3620.9240 9216.5000
   re75
               1532.0553
                            2466.4844 -934.4291 981.0968 1060.6582 6795.0100
   educ
                 10.3459
                             10.2354
                                        0.1105
                                                  1.0000
                                                            0.7027
                                                                      4.0000
   black
                 0.8432
                              0.2028
                                         0.6404
                                                   1.0000
                                                            0.6432
                                                                      1.0000
   hispan
                 0.0595
                                        -0.0827
                               0.1422
                                                   0.0000
                                                            0.0811
                                                                      1.0000
   age
                 25.8162
                              28.0303
                                         -2.2141
                                                   1.0000
                                                            3.2649
                                                                     10.0000
   married
                  0.1892
                               0.5128
                                         -0.3236
                                                   0.0000
                                                            0.3243
                                                                      1.0000
   nodegree
                  0.7081
                               0.5967
                                         0.1114
                                                   0.0000
                                                            0.1135
                                                                      1.0000
   Summary of balance for matched data:
           Means Treated Means Control Mean Diff eQQ Med eQQ Mean
                                                                  eQQ Max
   distance
                  0.5774
                               0.5761 0.0013
                                                0.0026 0.0066
                                                                    0.096
   re74
               2095.5737
                            2199.7126 -104.1390 72.6510 512.7210 13121.750
   re75
               1532.0553
                            1524.8362 7.2191 209.6655 460.5643 12746.050
   educ
                 10.3459
                              10.3227
                                        0.0233 0.0000
                                                         0.4596
                                                                    4.000
   black
                  0.8432
                              0.8347
                                       0.0086 0.0000
                                                         0.0020
                                                                    1.000
   hispan
                 0.0595
                              0.0583 0.0012 0.0000
                                                         0.0012
                                                                    1.000
   age
                 25.8162
                              24.6928 1.1235 3.0000
                                                         3.3100
                                                                    9.000
   married
                 0.1892
                              0.1285 0.0607 0.0000
```

0.0544

1.000
Week1 p4

>

outcome analysis: optmatch fullmatch, lalonde data R version 3.5.3 (2019-03-11) -- "Great Truth" Copyright (C) 2019 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 (64-bit) > library(optmatch) > data(lalonde) > dim(lalonde) [1] 614 10 > library(cobalt) Attaching package: 'cobalt' The following object is masked _by_ `.GlobalEnv': lalonde The following object is masked from 'package:MatchIt': lalonde > head(lalonde) re78 treat age educ black hispan married nodegree re74 re75 1 37 1 22
 11
 1
 0
 1
 1
 0
 9930.0460

 9
 0
 1
 0
 1
 0
 3595.8940
 NSW1 NSW2 0 0
 0
 0
 0
 24909.4500

 1
 0
 0
 7506.1460

 1
 0
 0
 289.7899

 1
 0
 0
 4056.4940
 1 0 0 1 0 0 1 0 0 1 0 0 NSW3 1 30 12 NSW4 1 27 NSW5 1 33 9 NSW6 1 22 > ##### > ###now try optmatch > # cobalt vignette does it this way > covs <- subset(lalonde, select = -c(treat, re78))</pre> > pfit = qlm(f.build("treat", covs), data = lalonde, family = "binomial") > lalonde\$p.score = pfit\$fitted.values #get the propensity score > boxplot(lalonde\$p.score ~ lalonde\$treat) # propensity score > fm2 = fullmatch(treat ~ p.score, data = lalonde) > bal.tab(fm2, formula = f.build("treat", covs), data = lalonde) Call fullmatch(x = treat ~ p.score, data = lalonde) Balance Measures Type Diff.Adi Contin. age 0.1494 educ Contin. -0.0364 black Binary 0.0086 Binary -0.0013 hispan 0.0579 married Binary nodegree Binary 0.0092 -0.0636 re74 Contin. re75 Contin. -0.0124 Sample sizes Control Treated 429 185 A11 185 Matched 429 > love.plot(bal.tab(fm2, formula = f.build("treat", covs), data = lalonde)) > # close, but not quite the same balance table as MatchIt(full); 102 subgroups, 104 from Matchit(full) > summary(fm2) Structure of matched sets:
 5+:1
 4:1
 3:1
 2:1
 1:1
 1:2
 1:3
 1:4
 1:5+

 8
 2
 6
 16
 39
 7
 4
 5
 15
 8 2 6 16 39 7 Effective Sample Size: 137.4 4 (equivalent number of matched pairs). > # looks like we got 102 subclasses here, 104 from MatchIt(full) > stratumStructure(fm2) 1:20 1:41 1:51 1:90 1 1 1 1 ## what we need for outcome analysis is to add the subclass info for each unit to the lalonde dataset

In MatchIt matched.data does this for us # here we grab a factor giving us the subclass info # I call the augmented lalonde dataset "matched"

> matched = cbind(lalonde, matches = fm2)

> head(matched) treat age educ black hispan married nodegree re74 re75 re78 p.score m<mark>atches</mark> 9930.0460 0.6387699 NSW1 1 1 NSW2 0 3595.8940 0.2246342 1.98 NSW3 0 24909.4500 0.6782439 1.109 7506.1460 0.7763241 NSW4 1.120 NSW5 289.7899 0.7016387 1.131 NSW6 4056.4940 0.6990699 1.142 > matched[1:20,] treat age educ black hispan married nodegree re74 re75 re78 p.score matches 0 9930.0460 0.63876993 NSW1 1.1 NSW2 0 3595.8940 0.22463424 1.98 NSW3 0 24909.4500 0.67824388 1.109 NSW4 0 7506.1460 0.77632408 1,120 NSW5 289.7899 0.70163874 1.131 NSW6 4056.4940 0.69906990 1.142 NSW7 0.0000 0.65368426 1.153 8472.1580 0.78972311 NSW8 1.164 NSW9 Ω Ω 2164.0220 0.77983825 1.120 NSW10 0 12418.0700 0.04292461 1.2 NSW11 0 8173.9080 0.68901996 1.13 1 21 0 17094.6400 0.68244400 NSW12 1.24 0.0000 0.64986767 NSW13 Ω 1.35 NSW14 0 18739.9300 0.56241073 1.46 NSW15 1 17 0 3023.8790 0.60858629 1.57 NSW16 3228 5030 0 72249036 1.68 0 14581.8600 0.70259562 NSW17 1.131 NSW18 1 23 0 7693.4000 0.73496416 1.90 NSW19 0 10804.3200 0.71166489 1.97 0 10747.3500 0.66431981 1 26 NSW20 1.99 > table(matched\$matches) 1.1 1.100 1.101 1.102 1.107 1.108 1.109 1.11 1.113 1.114 1.118 1.119 1.120 1.121 1.122 1.123 1.124 1.125 1.126 1.129 1.13 1.131 1.132 1.133 1.134 1.135 1.137 1.138 1.139 1.14 1.140 1.141 б 1.142 1.143 1.145 1.148 1.151 1.152 1.153 1.154 1.155 1.157 1.16 1.160 1.162 1.164 1.166 1.167 1.168 1.17 1.170 1.172 1.174 1.176 1.182 1.183 1.185 1.19 1.2 1.20 1.22 1.23 1.24 1.26 1.29 1.28 1.3 1.30 1.31 1.34 1.35 1.37 1.40 1.43 1.44 1.46 1.47 1.49 1.52 1.53 1.57 1.7 1.71 1.72 1.75 1.76 1.82 1.85 1.89 1.90 1.91 1.92 1.60 1.63 1.68 1.87 1.93 1.94 1.96 1.97 1.98 1.99 > length(table(matched\$matches)) [1] 102 > library(lme4) Loading required package: Matrix

> str(matched)

614 obs. of 13 variables: 'data.frame': \$ treat : int 111111111. \$ age : int 37 22 30 27 33 22 23 32 22 33 ... : int 11 9 12 11 8 9 12 11 16 12 ... \$ educ 1 0 1 1 1 1 1 1 1 0 ... \$ black : int \$ hispan : int 0 1 0 0 0 0 0 0 0 0 ... \$ married : int 1 0 0 0 0 0 0 0 0 1 ... 1 1 0 1 1 1 0 1 0 0 ... \$ nodegree: int 0 0 0 0 0 0 0 0 0 0 ... : num \$ re74 \$ re75 : num 000000000. 9930 3596 24909 7506 290 \$ re78 : num \$ p.score : num 0.639 0.225 0.678 0.776 0.702 ... \$ matches : Factor w/ 102 levels "1.1","1.100",...: 1 101 7 13 22 33 39 46 13 59 ...

so now we can use the <mark>factor matches just like we used subclass from MatchIt</mark> # lmer isn't that numerically happy, but we get about the same result

> optmatch_lmer2 = lmer(re78 ~ treat + (1 + treat|matches), data = matched)

Warning message:

In checkConv(attr(opt, "derivs"), opt\$par, ctrl = control\$checkConv, : Model failed to converge with max grad = 0.00776755 (tol = 0.002, component 1)

```
> summary(optmatch_lmer2)
Linear mixed model fit by REML ['lmerMod']
Formula: re78 ~ treat + (1 + treat | matches)
   Data: matched
REML criterion at convergence: 12634.7
Scaled residuals:
Min 10 Median 30 Max
-1.5112 -0.7597 -0.2716 0.5129 7.4641
Random effects:
Groups Name Variance Std.Do
matches (Intercept) 3476596 1865
treat 7026358 2651
Residual 51450478 7173
                           Variance Std.Dev. Corr
                                                    -1.00
Number of obs: 614, groups: matches, 102
Fixed effects:
              Estimate Std. Error t value
(Intercept) 5875.6 491.7 11.950
treat 464.6 743.7 0.625
treat
Correlation of Fixed Effects:
(Intr)
treat -0.691
convergence code: 0
Model failed to converge with max|grad| = 0.00776755 (tol = 0.002, component 1)
```

Software (R software with no guarantees)

Two R Packages for Sensitivity Analysis in Observational Studies

sensitivitymv (R package at cran)

sensitivitymw (Rpackage at cran)

"A new u-statistic..." Biometrics 2011 R-Session (Supplement 2): txt.document

Match Functions from Design of Observational Studies R workspace

Selected Data Sets from Design of Observational Studies <u>R workspace</u>

Appendix 3.9 from Design of Observational Studies <u>R workspace</u>

Software supplement to "Imposing minimax constraints..." <u>pdf</u> aamatch package local files <u>zip</u> <u>tar.gz</u>

Suggested R Packages for Matching

Ben Hanson's optmatch (at cran)

Sam Pimentel's rcbalance (at <u>cran</u>)

Bo Lu, Robert Greevy, Xinyi Xu and Cole Beck's nbpMatching (at cran)

Dan Yang's finebalance package (archived but working at cran)

Jose Zubizarreta's mipmatch (requires special installation)

Adaptive sensitivity analysis

Dylan Small's SensitivityCaseControl (at cran) including adaptive.noether.brown