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Advanced Statistical Methods 
for Observational Studies 



class management 

 Mike’s office hours aren’t happening this Thursday. 

 I’m out of town. 

 If you’d like, we can schedule a call during that time, need to 
email me. 

 Questions? 



a matched study 

Design of Observational Studies: chapter 7 



reminder 

 We’re using pair matching as our “go to” model. 

 In lecture 03 we learned how to do  
 1:k matching 

 1:k matching with variable k 

 Full matching 

 Matching with more than one control is often better 
because you’re using more of the data than you would in a 
pair match. 



efficiency 

Design of Observational Studies: chapter 8.7 



efficiency 

 Our primary concern is bias.  

 Bias is what the critiques are going to hit us on. 

 Bias doesn’t go away as we get more and more data. 

 Efficiency is good to pay attention to though. 

 If we assume our naïve model and constant variance, and 
we standardize to infinite number of controls then 

 

 

 In the real world, going from 1:2 to 1:10 may actually not be 
as beneficial as it looks… this table assumes perfect 
matches are available. 

 

 

number of controls 1 2 4 6 10 ∞ 

variance multiplier 2.00 1.50 1.25 1.17 1.10 1.00 



unobserved confounding 

There are more things in heaven and earth, Horatio,  
Than are dreamt of in your philosophy.  
- Hamlet (1.5.167-8) 
 

Design of Observational Studies: chapter 3.4-3.8 



naïve model 

 Model  

 Assumptions  

 Implementation  

 

 

 



naïve model: “natural” experiments 

 What if we design our study such that 𝑍𝑙 + 𝑍𝑘 = 1? 

              Pr 𝑍𝑘 = 1, 𝑍𝑙 = 0 … , 𝑍𝑙 + 𝑍𝑘 = 1  
 

                   =
Pr 𝑍𝑘=1,𝑍𝑙=0 …

Pr 𝑍𝑘=1,𝑍𝑙=0 … +Pr 𝑍𝑘=0,𝑍𝑙=1 …
 

 

                      =
𝜋𝑘
1+0 1−𝜋𝑘

1−1 +(1−0)

Pr 𝑍𝑘=1,𝑍𝑙=0 … +Pr 𝑍𝑘=0,𝑍𝑙=1 …
 

 

                      =
𝜋𝑘
1+0 1−𝜋𝑘

1−1 +(1−0)

𝜋𝑘
1+0 1−𝜋𝑘

1−1 +(1−0) +𝜋𝑘
0+1 1−𝜋𝑘

1−0 +(1−1) =
1

2
 

 

                       IF we can do this then we get to use the same tools developed for RCTs! 

lecture 02 



naïve model: assumption one 

 Strongly Ignorable Treatment Assignment: Those that look 
alike (in our data set) are alike 

𝜋𝑖 = Pr 𝑍𝑖 = 1 𝑟𝑇𝑖 , 𝑟𝐶𝑖 , 𝒙𝑖 , 𝑢𝑖 = Pr 𝑍𝑖 = 1 𝒙𝑖  

    and 

0 < 𝜋𝑖 < 1 for all i = 1, 2, …, n 

 If two subjects have the same propensity score, then their 
values of x may be different. 

 By SITA, if these two subjects have the same e(x) then the 
differences in their x are not predictive of treatment 
assignment (i.e., 𝒙 ⊥ 𝑍|𝑒(𝒙)).  

 Therefore the mismatches in x will be due to chance and 
will tend to balance. (more details) 

 

 

∥ 

lecture 03 

http://biomet.oxfordjournals.org/content/70/1/41.full.pdf+html


naïve model: assumption two 

 No Interference Between Units (part of SUTVA): the 
observation on one unit should be unaffected by particular 
assignment of treatments to other units. 

 Can be written as: 
𝑅𝑖(𝑍𝑖 = 𝑧𝑖) = 𝑅𝑖(𝒁

∗) 

    where 𝑍𝑖 = 𝑧𝑖 indicates the treatment level for the ith unit  
    and 𝒁∗  is a particular randomization from the set of all  
    randomizations that have 𝑍𝑖 = 𝑧𝑖.  

 Not true for most educational interventions and infectious 
disease applications. 

 More details here and here. 

 

 

http://www.biostat.jhsph.edu/~dscharf/Causal/rubin.journ.psych.ed.pdf
http://www-stat.wharton.upenn.edu/~rosenbap/interference.pdf


naïve model: implementation 

 Collect a bunch of covariates that are related to treatment 
level and to the outcome. 

 Exact match if you can. 

 You probably can’t exact match so estimate propensity 
scores and match on a hybrid of pscores and Mahalanobis 
distance. 

 Play around with the matching until you achieve acceptable 
comparison groups. 

 Die a little bit inside when you read your critiques’ reviews 
because they point out all of the confounding that could 
exist. Reevaluate life choices. 



sensitivity analysis 

 Sensitivity models are a means for moving past the “you 
didn’t do X which could lead to bias.” 

 A useful sensitivity model addresses one assumption at a 
time, quantifying and making understandable the impact of 
departures from the assumption being assessed. 

 We’re going to discuss the Γ sensitivity model which 
addresses the ignorable treatment assignment (SITA), not 
interference (SUTVA). 



sensitivity analysis 

 A word of warning: many people find the Γ sensitivity 
model confusing.  
 This lecture will only give you a sense of what’s going on with this model; 

it isn’t intended to be sufficient to fully understand Γ sensitivity. 

 Read section 3.4-3.8. 

 If you are so inclined then this might be a very nice place to produce your 
own framework for sensitivity. 



model: sensitivity analysis 

 Start with two observational units who have probability of 
treatment 𝜋𝑖 and 𝜋𝑗 (which may not be the same values). 

 Recall we defined this as 𝜋𝑖 = Pr 𝑍𝑖 = 1 𝑟𝑇𝑖 , 𝑟𝐶𝑖 , 𝒙𝑖 , 𝑢𝑖 . 
 

 We can talk about the odds of i receiving treatment: 
𝜋𝑖

1 − 𝜋𝑖
 

 

 And we can put the odds into a ratio: 
𝜋𝑖/(1 − 𝜋𝑖)

𝜋𝑗/(1 − 𝜋𝑗)
 

 



model: sensitivity analysis 

 Our sensitivity model asserts that we can bound the odds 
ratio like so: 

1

Γ
≤
𝜋𝑖/(1 − 𝜋𝑖)

𝜋𝑗/(1 − 𝜋𝑗)
≤ Γ 

    whenever 𝒙𝑖 = 𝒙𝑗. 

 We are making a particular statement about how “far off” 
the actual treatment probabilities are from the pscore 
(which only depends on the observed covariates). 

 If Γ = 1 then this forces 𝜋𝑖 = 𝜋𝑗. 

 If Γ = 2 then 𝜋𝑖 can depart from 𝜋𝑗 
 For example: if 𝜋𝑖 = 1/2 and 𝜋𝑗 = 2/3 then  

𝜋𝑖/(1 − 𝜋𝑖)

𝜋𝑗/(1 − 𝜋𝑗)
=

0.5/(1 − 0.5)

0. 6  /(1 − 0. 6 )
= 2 

 



model: sensitivity analysis 

 With this model in place we can think about “worst case” 
scenarios regarding violations of SITA. 

 If someone is willing to give you a particular framework for 
how the violation must occur (to the exclusion of all other 
possible ways it can fail) then use that parametric model. 

 The Γ sensitivity model is non-parametric and we look at 
the extreme values that might occur when Γ > 1. 
 We’ll get ranges of p-values and estimates 

 Every study is sensitive to sufficiently large violations of the 
SITA assumption. Just let Γ → ∞. 

 If we’re going to make progress then the question becomes 
what level of Γ is sufficiently large to proceed.  

 



naïve model: “natural” experiments 

 What if we design our study such that 𝑍𝑙 + 𝑍𝑘 = 1? 

              Pr 𝑍𝑘 = 1, 𝑍𝑙 = 0 … , 𝑍𝑙 + 𝑍𝑘 = 1  
 

                   =
Pr 𝑍𝑘=1,𝑍𝑙=0 …

Pr 𝑍𝑘=1,𝑍𝑙=0 … +Pr 𝑍𝑘=0,𝑍𝑙=1 …
 

 

                      =
𝜋𝑘
1+0 1−𝜋𝑘

1−1 +(1−0)

Pr 𝑍𝑘=1,𝑍𝑙=0 … +Pr 𝑍𝑘=0,𝑍𝑙=1 …
 

 

                      =
𝜋𝑘
1+0 1−𝜋𝑘

1−1 +(1−0)

𝜋𝑘
1+0 1−𝜋𝑘

1−1 +(1−0) +𝜋𝑘
0+1 1−𝜋𝑘

1−0 +(1−1) =
1

2
 

 

                       IF we can do this then we get to use the same tools developed for RCTs! 

lecture 02 



model: sensitivity analysis 

 If we design our study such that 𝑍𝑙 + 𝑍𝑘 = 1: 
  

              Pr 𝑍𝑘 = 1, 𝑍𝑙 = 0 … , 𝑍𝑙 + 𝑍𝑘 = 1 =
𝜋𝑖

𝜋𝑖+𝜋𝑗
 

 

 Combining this with the sensitivity model, and doing some 
vaguely enjoyable algebra, we get: 

1

1 + Γ
≤

𝜋𝑖
𝜋𝑖 + 𝜋𝑗

≤
Γ

1 + Γ
 

  

 We get ½ if Γ = 1. 

 

 



model: sensitivity analysis 

 The randomization tests we have can be reworked under 
the understanding that we can vary the odds ratio within 

1

1 + Γ
≤

𝜋𝑖
𝜋𝑖 + 𝜋𝑗

≤
Γ

1 + Γ
 

 Setting 
𝜋𝑖

𝜋𝑖+𝜋𝑗
=

Γ

1+Γ
 will get you one extreme. 

 Setting 
1

1+Γ
=

𝜋𝑖

𝜋𝑖+𝜋𝑗
 will get you the other. 

 For notational purposes, let’s say that the usual Wilcoxon 
signed rank test (when Γ = 1) is written as 𝑇. 

 Then we’ll write the test statistic under our sensitivity 
model as 𝑇 . 

 

 

 



model: sensitivity analysis 

 We can calculate the exact distribution of 𝑇  under either 
extreme, but for large matched sets it’ll be easier (and not 
far off) to use an approximation. 

 The 𝑇  has known expected value and variance 

𝐸 𝑇 =
Γ

1 + Γ

I(I + 1)

2
 

 

𝑣𝑎𝑟(𝑇 ) =
Γ

1 + Γ 2

I(I + 1)(2I + 1)

6
 

 

     where I is the number of matched pairs. 

 

 



model: sensitivity analysis 

 We can calculate the exact distribution of 𝑇  under either 
extreme, but for large matched sets it’ll be easier (and not 
far off) to use an approximation. 

 The 𝑇  has known expected value and variance 

𝐸 𝑇 =
1

1 + Γ

I(I + 1)

2
 

 

𝑣𝑎𝑟(𝑇 ) =
Γ

1 + Γ 2

I(I + 1)(2I + 1)

6
 

 

     where I is the number of matched pairs. 

 

 



model: sensitivity analysis 

 The standardized deviate of 𝑇 (the Wilcoxon signed rank 
statistic) can be approximated using: 

 
𝑇 − 𝐸[𝑇 ]

𝑣𝑎𝑟(𝑇 )
~𝑁(0,1) 

 

 



example: sensitivity analysis 

Similar to data set from lecture 03, but different number of observations and outcome of interest. 

obs b_weight gest_age dose hearing 

1 2412 36 1 0.12 

2 2205 29 1 0.24 

3 2569 36 1 0.02 

4 2443 34 1 -0.16 

5 2569 36 0 0.58 

6 2436 35 0 -0.22 

7 2461 34 0 -0.07 

8 2759 32 0 -0.55 

9 2324 27 0 -0.36 

10 2667 34 0 0.28 

… … … … … 

500 2349 33 1 -0.55 



example: sensitivity analysis 

Outcome of interest: Hearing is some standardized metric with population mean=0 and sd=1. 

obs b_weight gest_age dose hearing 

1 2412 36 1 0.12 

2 2205 29 1 0.24 

3 2569 36 1 0.02 

4 2443 34 1 -0.16 

5 2569 36 0 0.58 

6 2436 35 0 -0.22 

7 2461 34 0 -0.07 

8 2759 32 0 -0.55 

9 2324 27 0 -0.36 

10 2667 34 0 0.28 

… … … … … 

500 2349 33 1 -0.55 



example: sensitivity analysis 

 Create 250 pair matches. 

 Using T, the usual Wilcoxon signed rank statistic: 

 We know that E[T]=15,688 and sd(T)=812 

 Get T=13,250 

 Using the approximation: 
 

𝑇 − 𝐸[𝑇]

𝑣𝑎𝑟(𝑇)
~𝑁(0,1) 


13,250−15,688

812
= −3.00, which has a small p-value, under the 

naïve model. 

 



example: sensitivity analysis 

 Create 250 pair matches. 

 Using 𝑇 , the usual Wilcoxon signed rank statistic: 

 We know that E[𝑇 ]=16,540 and sd(𝑇 )=810 

 Get T=13,250 

 Using the approximation: 
 

𝑇 − 𝐸[𝑇 ]

𝑣𝑎𝑟(𝑇 )
~𝑁(0,1) 


13,250−16,540

810
= −4.00, which has a small p-value. 

 

𝐸 𝑇 =
Γ

1 + Γ

I(I + 1)

2
 

Set Γ=1.11  



example: sensitivity analysis 

 Create 250 pair matches. 

 Using 𝑇 , the usual Wilcoxon signed rank statistic: 

 We know that E[𝑇 ]=14,835 and sd(𝑇 )=810 

 Get T=13,250 

 Using the approximation: 
 

𝑇 − 𝐸[𝑇 ]

𝑣𝑎𝑟(𝑇 )
~𝑁(0,1) 


13,250−14,835

810
= −1.95, which has a p-value close to 0.05. 

 Interpretation: If there was a small amount of bias Γ = 1.12 
then this would nullify our qualitative claims. 

 

𝐸 𝑇 =
1

1 + Γ

I(I + 1)

2
 

Set Γ=1.11  



implementation: sensitivity analysis 

 In practice, software will do this for you and you will 
interpret. 

 The key to keep in mind is that there are two different way 
things could go wrong: (i) units could be sorted into 
treatment or (ii) into control. 

 This gives rise to three different distributions: 

 Naïve model: T~N(
I I+1

4
,
I(I+1)(2I+1)

24
) 

 Biased toward one way: T~N(
Γ

1+Γ

I I+1

2
,

Γ

1+Γ 2

I(I+1)(2I+1)

6
) 

 Biased other way: T~N(
1

1+Γ

I I+1

2
,

Γ

1+Γ 2

I(I+1)(2I+1)

6
) 

 

 

 

 

 



implementation: sensitivity analysis 

 Use the new distributions to test your statistic to see where 
its critical values are. 

 This will lead you to provide wider intervals for everything: 
 If you had a point estimate of (to pick a random number): 5 then, for a 

particular Γ, you may end up with a “point estimate” of (4, 6). This new 
interval is not due to randomness in assignment, it is due to the 
difference in treatment assignment probabilities. 

 If you had a p-value of 0.012 , for a particular Γ, you may end up with a 
p-value interval of (0.032, 0.0001). 

 

 

 

 

 

 



implementation: sensitivity analysis 

 In practice, it’s common to just report the value of Γ which 
nullifies your qualitative conclusions (i.e., goes from 
significant to insignificant), and to help the reader in 
interpreting the meaning of Γ. 

 For example, Γ = 2 means that within a given pair – even 
though the two matched individuals looked identical in the 
data set – the actual odds of assignment was up to twice as 
likely for one member in the pair than the other. Likely this 
difference is due to the unobserved covariates. 

 The question then becomes: Is what’s left lingering out 
there, outside of your data set, enough to cause that level of 
confounding? 

 

 

 

 



practical issue 

Design of Observational Studies: chapter 9 

venturing out of the ivory tower. 



assessing covariate balance 

 Assessing covariate balance 

  High NICU Low NICU sd Δ/sd 

death 2.26% 1.25% 13.67% 0.07 

birth weight (g)         2,454          2,693              739  -0.32 

gestational age (months)         34.61          35.69             2.76  -0.39 

  High NICU Low NICU sd Δ/sd 

death 1.55% 1.94% 13.67% -0.03 

birth weight (g)         2,584          2,581              739  0.00 

gestational age (months)         35.14          35.13             2.76  0.00 

unmatched 

matched 



assessing covariate balance 

 Standardized difference 

(i) Create a weighted standard deviation using pre-match 
observations (i.e., use all observations). 

𝑠𝑎𝑙𝑙,𝑘 =
𝑠𝑡,𝑘
2 + 𝑠𝑐,𝑘

2

2
 

       where 𝑠𝑡,𝑘
2  is the standard deviation of covariate 𝒙𝑘   

       amongst the treated group prior to matching. 

(i) Divide the difference of the observed means by the 
weighted standard deviation. 

𝑥𝑡,𝑘 − 𝑥𝑐,𝑘
𝑠𝑎𝑙𝑙,𝑘

 

Links: 1 and 2 

http://gking.harvard.edu/files/matchp.pdf
http://www.ncbi.nlm.nih.gov/pubmed/18972455


assessing covariate balance 

 Assessing covariate balance 

 

 

 

 

 

 

 

 

 The observed difference between the treated and control 
groups is judged by the typical variation in that covariate. 

  High NICU Low NICU sd Δ/sd 

death 2.26% 1.25% 13.67% 0.07 

birth weight (g)         2,454          2,693              739  -0.32 

gestational age (months)         34.61          35.69             2.76  -0.39 

  High NICU Low NICU sd Δ/sd 

death 1.55% 1.94% 13.67% -0.03 

birth weight (g)         2,584          2,581              739  0.00 

gestational age (months)         35.14          35.13             2.76  0.00 

unmatched 

matched 



assessing covariate balance 



dealing with lots of observations 

 If you get lots of observations then you should be happy. 

 If you try to put them all into a matching algorithm then 
you will be sad. 

 The complexity of matching algorithms grows really fast so 
cutting down the problem into smaller chunks helps a lot. 

 Look at your covariates:  
 Is there one or two that are binary or categorical? 

 Break your data set into separate data sets and match within a given 
level of a variable (or variables). 

 Choose variables that are prognostically important. 

 It’s nice if these variables are close to uniformly distributed (e.g., p=0.5, 
or p=<1/3, 1/3, 1/3>). 



dealing with lots of observations 

 In the NICU example, we had millions of babies. 

 I sub-setted the data on gestational age (i.e., 26 weeks only 
matched to 26 weeks). 

 For larger gestational age groups, I further sub-setted on 
birth weight. 
 This was much less satisfactory because it’s more continuous. 

 I picked arbitrary boundaries and didn’t look back…  

 You can fret about the matching method, but do not 
confuse that for the quality of the match which is assessed 
by looking at the covariates. 



missing covariates 

 Missing covariates 

obs b_weight gest_age dose death e^(x) 

1 2412 36 1 0 

2 NA 29 1 1 

3 2569 36 1 0 

4 2443 34 1 0 

5 2569 36 0 0 

6 2436 NA 0 0 

7 2461 34 0 0 

8 2759 32 0 0 

9 2324 27 0 1 

10 2667 34 0 0 



missing covariates 

 Missing covariates 

obs b_weight bw_mis gest_age ga_mis dose death 

1 2412 0 36 0 1 0 

2 2515 1 29 0 1 1 

3 2569 0 36 0 1 0 

4 2443 0 34 0 1 0 

5 2569 0 36 0 0 0 

6 2436 0 33 1 0 0 

7 2461 0 34 0 0 0 

8 2759 0 32 0 0 0 

9 2324 0 27 0 0 1 

10 2667 0 34 0 0 0 

(i)  Build pscores using the imputed value and the missing indicators. 
(ii) Use imputed values and missing indicators in calculating the Mahalanobis distance. 



a small but important point 

you your trusty buddy 

Gimme the  
outcomes back! 

No. 

But I want an 
awesome p-value! 

Lock in your design, 
or that ain’t Science. 

Sorry, I don’t  
know what came over me! 



fin. 


