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Advanced Statistical Methods 
for Observational Studies 



class management 

 Mike’s office hours aren’t happening this Thursday. 

 I’m out of town. 

 If you’d like, we can schedule a call during that time, need to 
email me. 

 Questions? 



a matched study 

Design of Observational Studies: chapter 7 



reminder 

 We’re using pair matching as our “go to” model. 

 In lecture 03 we learned how to do  
 1:k matching 

 1:k matching with variable k 

 Full matching 

 Matching with more than one control is often better 
because you’re using more of the data than you would in a 
pair match. 



efficiency 

Design of Observational Studies: chapter 8.7 



efficiency 

 Our primary concern is bias.  

 Bias is what the critiques are going to hit us on. 

 Bias doesn’t go away as we get more and more data. 

 Efficiency is good to pay attention to though. 

 If we assume our naïve model and constant variance, and 
we standardize to infinite number of controls then 

 

 

 In the real world, going from 1:2 to 1:10 may actually not be 
as beneficial as it looks… this table assumes perfect 
matches are available. 

 

 

number of controls 1 2 4 6 10 ∞ 

variance multiplier 2.00 1.50 1.25 1.17 1.10 1.00 



unobserved confounding 

There are more things in heaven and earth, Horatio,  
Than are dreamt of in your philosophy.  
- Hamlet (1.5.167-8) 
 

Design of Observational Studies: chapter 3.4-3.8 



naïve model 

 Model  

 Assumptions  

 Implementation  

 

 

 



naïve model: “natural” experiments 

 What if we design our study such that 𝑍𝑙 + 𝑍𝑘 = 1? 

              Pr 𝑍𝑘 = 1, 𝑍𝑙 = 0 … , 𝑍𝑙 + 𝑍𝑘 = 1  
 

                   =
Pr 𝑍𝑘=1,𝑍𝑙=0 …

Pr 𝑍𝑘=1,𝑍𝑙=0 … +Pr 𝑍𝑘=0,𝑍𝑙=1 …
 

 

                      =
𝜋𝑘
1+0 1−𝜋𝑘

1−1 +(1−0)

Pr 𝑍𝑘=1,𝑍𝑙=0 … +Pr 𝑍𝑘=0,𝑍𝑙=1 …
 

 

                      =
𝜋𝑘
1+0 1−𝜋𝑘

1−1 +(1−0)

𝜋𝑘
1+0 1−𝜋𝑘

1−1 +(1−0) +𝜋𝑘
0+1 1−𝜋𝑘

1−0 +(1−1) =
1

2
 

 

                       IF we can do this then we get to use the same tools developed for RCTs! 

lecture 02 



naïve model: assumption one 

 Strongly Ignorable Treatment Assignment: Those that look 
alike (in our data set) are alike 

𝜋𝑖 = Pr 𝑍𝑖 = 1 𝑟𝑇𝑖 , 𝑟𝐶𝑖 , 𝒙𝑖 , 𝑢𝑖 = Pr 𝑍𝑖 = 1 𝒙𝑖  

    and 

0 < 𝜋𝑖 < 1 for all i = 1, 2, …, n 

 If two subjects have the same propensity score, then their 
values of x may be different. 

 By SITA, if these two subjects have the same e(x) then the 
differences in their x are not predictive of treatment 
assignment (i.e., 𝒙 ⊥ 𝑍|𝑒(𝒙)).  

 Therefore the mismatches in x will be due to chance and 
will tend to balance. (more details) 

 

 

∥ 

lecture 03 

http://biomet.oxfordjournals.org/content/70/1/41.full.pdf+html


naïve model: assumption two 

 No Interference Between Units (part of SUTVA): the 
observation on one unit should be unaffected by particular 
assignment of treatments to other units. 

 Can be written as: 
𝑅𝑖(𝑍𝑖 = 𝑧𝑖) = 𝑅𝑖(𝒁

∗) 

    where 𝑍𝑖 = 𝑧𝑖 indicates the treatment level for the ith unit  
    and 𝒁∗  is a particular randomization from the set of all  
    randomizations that have 𝑍𝑖 = 𝑧𝑖.  

 Not true for most educational interventions and infectious 
disease applications. 

 More details here and here. 

 

 

http://www.biostat.jhsph.edu/~dscharf/Causal/rubin.journ.psych.ed.pdf
http://www-stat.wharton.upenn.edu/~rosenbap/interference.pdf


naïve model: implementation 

 Collect a bunch of covariates that are related to treatment 
level and to the outcome. 

 Exact match if you can. 

 You probably can’t exact match so estimate propensity 
scores and match on a hybrid of pscores and Mahalanobis 
distance. 

 Play around with the matching until you achieve acceptable 
comparison groups. 

 Die a little bit inside when you read your critiques’ reviews 
because they point out all of the confounding that could 
exist. Reevaluate life choices. 



sensitivity analysis 

 Sensitivity models are a means for moving past the “you 
didn’t do X which could lead to bias.” 

 A useful sensitivity model addresses one assumption at a 
time, quantifying and making understandable the impact of 
departures from the assumption being assessed. 

 We’re going to discuss the Γ sensitivity model which 
addresses the ignorable treatment assignment (SITA), not 
interference (SUTVA). 



sensitivity analysis 

 A word of warning: many people find the Γ sensitivity 
model confusing.  
 This lecture will only give you a sense of what’s going on with this model; 

it isn’t intended to be sufficient to fully understand Γ sensitivity. 

 Read section 3.4-3.8. 

 If you are so inclined then this might be a very nice place to produce your 
own framework for sensitivity. 



model: sensitivity analysis 

 Start with two observational units who have probability of 
treatment 𝜋𝑖 and 𝜋𝑗 (which may not be the same values). 

 Recall we defined this as 𝜋𝑖 = Pr 𝑍𝑖 = 1 𝑟𝑇𝑖 , 𝑟𝐶𝑖 , 𝒙𝑖 , 𝑢𝑖 . 
 

 We can talk about the odds of i receiving treatment: 
𝜋𝑖

1 − 𝜋𝑖
 

 

 And we can put the odds into a ratio: 
𝜋𝑖/(1 − 𝜋𝑖)

𝜋𝑗/(1 − 𝜋𝑗)
 

 



model: sensitivity analysis 

 Our sensitivity model asserts that we can bound the odds 
ratio like so: 

1

Γ
≤
𝜋𝑖/(1 − 𝜋𝑖)

𝜋𝑗/(1 − 𝜋𝑗)
≤ Γ 

    whenever 𝒙𝑖 = 𝒙𝑗. 

 We are making a particular statement about how “far off” 
the actual treatment probabilities are from the pscore 
(which only depends on the observed covariates). 

 If Γ = 1 then this forces 𝜋𝑖 = 𝜋𝑗. 

 If Γ = 2 then 𝜋𝑖 can depart from 𝜋𝑗 
 For example: if 𝜋𝑖 = 1/2 and 𝜋𝑗 = 2/3 then  

𝜋𝑖/(1 − 𝜋𝑖)

𝜋𝑗/(1 − 𝜋𝑗)
=

0.5/(1 − 0.5)

0. 6  /(1 − 0. 6 )
= 2 

 



model: sensitivity analysis 

 With this model in place we can think about “worst case” 
scenarios regarding violations of SITA. 

 If someone is willing to give you a particular framework for 
how the violation must occur (to the exclusion of all other 
possible ways it can fail) then use that parametric model. 

 The Γ sensitivity model is non-parametric and we look at 
the extreme values that might occur when Γ > 1. 
 We’ll get ranges of p-values and estimates 

 Every study is sensitive to sufficiently large violations of the 
SITA assumption. Just let Γ → ∞. 

 If we’re going to make progress then the question becomes 
what level of Γ is sufficiently large to proceed.  

 



naïve model: “natural” experiments 

 What if we design our study such that 𝑍𝑙 + 𝑍𝑘 = 1? 

              Pr 𝑍𝑘 = 1, 𝑍𝑙 = 0 … , 𝑍𝑙 + 𝑍𝑘 = 1  
 

                   =
Pr 𝑍𝑘=1,𝑍𝑙=0 …

Pr 𝑍𝑘=1,𝑍𝑙=0 … +Pr 𝑍𝑘=0,𝑍𝑙=1 …
 

 

                      =
𝜋𝑘
1+0 1−𝜋𝑘

1−1 +(1−0)

Pr 𝑍𝑘=1,𝑍𝑙=0 … +Pr 𝑍𝑘=0,𝑍𝑙=1 …
 

 

                      =
𝜋𝑘
1+0 1−𝜋𝑘

1−1 +(1−0)

𝜋𝑘
1+0 1−𝜋𝑘

1−1 +(1−0) +𝜋𝑘
0+1 1−𝜋𝑘

1−0 +(1−1) =
1

2
 

 

                       IF we can do this then we get to use the same tools developed for RCTs! 

lecture 02 



model: sensitivity analysis 

 If we design our study such that 𝑍𝑙 + 𝑍𝑘 = 1: 
  

              Pr 𝑍𝑘 = 1, 𝑍𝑙 = 0 … , 𝑍𝑙 + 𝑍𝑘 = 1 =
𝜋𝑖

𝜋𝑖+𝜋𝑗
 

 

 Combining this with the sensitivity model, and doing some 
vaguely enjoyable algebra, we get: 

1

1 + Γ
≤

𝜋𝑖
𝜋𝑖 + 𝜋𝑗

≤
Γ

1 + Γ
 

  

 We get ½ if Γ = 1. 

 

 



model: sensitivity analysis 

 The randomization tests we have can be reworked under 
the understanding that we can vary the odds ratio within 

1

1 + Γ
≤

𝜋𝑖
𝜋𝑖 + 𝜋𝑗

≤
Γ

1 + Γ
 

 Setting 
𝜋𝑖

𝜋𝑖+𝜋𝑗
=

Γ

1+Γ
 will get you one extreme. 

 Setting 
1

1+Γ
=

𝜋𝑖

𝜋𝑖+𝜋𝑗
 will get you the other. 

 For notational purposes, let’s say that the usual Wilcoxon 
signed rank test (when Γ = 1) is written as 𝑇. 

 Then we’ll write the test statistic under our sensitivity 
model as 𝑇 . 

 

 

 



model: sensitivity analysis 

 We can calculate the exact distribution of 𝑇  under either 
extreme, but for large matched sets it’ll be easier (and not 
far off) to use an approximation. 

 The 𝑇  has known expected value and variance 

𝐸 𝑇 =
Γ

1 + Γ

I(I + 1)

2
 

 

𝑣𝑎𝑟(𝑇 ) =
Γ

1 + Γ 2

I(I + 1)(2I + 1)

6
 

 

     where I is the number of matched pairs. 

 

 



model: sensitivity analysis 

 We can calculate the exact distribution of 𝑇  under either 
extreme, but for large matched sets it’ll be easier (and not 
far off) to use an approximation. 

 The 𝑇  has known expected value and variance 

𝐸 𝑇 =
1

1 + Γ

I(I + 1)

2
 

 

𝑣𝑎𝑟(𝑇 ) =
Γ

1 + Γ 2

I(I + 1)(2I + 1)

6
 

 

     where I is the number of matched pairs. 

 

 



model: sensitivity analysis 

 The standardized deviate of 𝑇 (the Wilcoxon signed rank 
statistic) can be approximated using: 

 
𝑇 − 𝐸[𝑇 ]

𝑣𝑎𝑟(𝑇 )
~𝑁(0,1) 

 

 



example: sensitivity analysis 

Similar to data set from lecture 03, but different number of observations and outcome of interest. 

obs b_weight gest_age dose hearing 

1 2412 36 1 0.12 

2 2205 29 1 0.24 

3 2569 36 1 0.02 

4 2443 34 1 -0.16 

5 2569 36 0 0.58 

6 2436 35 0 -0.22 

7 2461 34 0 -0.07 

8 2759 32 0 -0.55 

9 2324 27 0 -0.36 

10 2667 34 0 0.28 

… … … … … 

500 2349 33 1 -0.55 



example: sensitivity analysis 

Outcome of interest: Hearing is some standardized metric with population mean=0 and sd=1. 

obs b_weight gest_age dose hearing 

1 2412 36 1 0.12 

2 2205 29 1 0.24 

3 2569 36 1 0.02 

4 2443 34 1 -0.16 

5 2569 36 0 0.58 

6 2436 35 0 -0.22 

7 2461 34 0 -0.07 

8 2759 32 0 -0.55 

9 2324 27 0 -0.36 

10 2667 34 0 0.28 

… … … … … 

500 2349 33 1 -0.55 



example: sensitivity analysis 

 Create 250 pair matches. 

 Using T, the usual Wilcoxon signed rank statistic: 

 We know that E[T]=15,688 and sd(T)=812 

 Get T=13,250 

 Using the approximation: 
 

𝑇 − 𝐸[𝑇]

𝑣𝑎𝑟(𝑇)
~𝑁(0,1) 


13,250−15,688

812
= −3.00, which has a small p-value, under the 

naïve model. 

 



example: sensitivity analysis 

 Create 250 pair matches. 

 Using 𝑇 , the usual Wilcoxon signed rank statistic: 

 We know that E[𝑇 ]=16,540 and sd(𝑇 )=810 

 Get T=13,250 

 Using the approximation: 
 

𝑇 − 𝐸[𝑇 ]

𝑣𝑎𝑟(𝑇 )
~𝑁(0,1) 


13,250−16,540

810
= −4.00, which has a small p-value. 

 

𝐸 𝑇 =
Γ

1 + Γ

I(I + 1)

2
 

Set Γ=1.11  



example: sensitivity analysis 

 Create 250 pair matches. 

 Using 𝑇 , the usual Wilcoxon signed rank statistic: 

 We know that E[𝑇 ]=14,835 and sd(𝑇 )=810 

 Get T=13,250 

 Using the approximation: 
 

𝑇 − 𝐸[𝑇 ]

𝑣𝑎𝑟(𝑇 )
~𝑁(0,1) 


13,250−14,835

810
= −1.95, which has a p-value close to 0.05. 

 Interpretation: If there was a small amount of bias Γ = 1.12 
then this would nullify our qualitative claims. 

 

𝐸 𝑇 =
1

1 + Γ

I(I + 1)

2
 

Set Γ=1.11  



implementation: sensitivity analysis 

 In practice, software will do this for you and you will 
interpret. 

 The key to keep in mind is that there are two different way 
things could go wrong: (i) units could be sorted into 
treatment or (ii) into control. 

 This gives rise to three different distributions: 

 Naïve model: T~N(
I I+1

4
,
I(I+1)(2I+1)

24
) 

 Biased toward one way: T~N(
Γ

1+Γ

I I+1

2
,

Γ

1+Γ 2

I(I+1)(2I+1)

6
) 

 Biased other way: T~N(
1

1+Γ

I I+1

2
,

Γ

1+Γ 2

I(I+1)(2I+1)

6
) 

 

 

 

 

 



implementation: sensitivity analysis 

 Use the new distributions to test your statistic to see where 
its critical values are. 

 This will lead you to provide wider intervals for everything: 
 If you had a point estimate of (to pick a random number): 5 then, for a 

particular Γ, you may end up with a “point estimate” of (4, 6). This new 
interval is not due to randomness in assignment, it is due to the 
difference in treatment assignment probabilities. 

 If you had a p-value of 0.012 , for a particular Γ, you may end up with a 
p-value interval of (0.032, 0.0001). 

 

 

 

 

 

 



implementation: sensitivity analysis 

 In practice, it’s common to just report the value of Γ which 
nullifies your qualitative conclusions (i.e., goes from 
significant to insignificant), and to help the reader in 
interpreting the meaning of Γ. 

 For example, Γ = 2 means that within a given pair – even 
though the two matched individuals looked identical in the 
data set – the actual odds of assignment was up to twice as 
likely for one member in the pair than the other. Likely this 
difference is due to the unobserved covariates. 

 The question then becomes: Is what’s left lingering out 
there, outside of your data set, enough to cause that level of 
confounding? 

 

 

 

 



practical issue 

Design of Observational Studies: chapter 9 

venturing out of the ivory tower. 



assessing covariate balance 

 Assessing covariate balance 

  High NICU Low NICU sd Δ/sd 

death 2.26% 1.25% 13.67% 0.07 

birth weight (g)         2,454          2,693              739  -0.32 

gestational age (months)         34.61          35.69             2.76  -0.39 

  High NICU Low NICU sd Δ/sd 

death 1.55% 1.94% 13.67% -0.03 

birth weight (g)         2,584          2,581              739  0.00 

gestational age (months)         35.14          35.13             2.76  0.00 

unmatched 

matched 



assessing covariate balance 

 Standardized difference 

(i) Create a weighted standard deviation using pre-match 
observations (i.e., use all observations). 

𝑠𝑎𝑙𝑙,𝑘 =
𝑠𝑡,𝑘
2 + 𝑠𝑐,𝑘

2

2
 

       where 𝑠𝑡,𝑘
2  is the standard deviation of covariate 𝒙𝑘   

       amongst the treated group prior to matching. 

(i) Divide the difference of the observed means by the 
weighted standard deviation. 

𝑥𝑡,𝑘 − 𝑥𝑐,𝑘
𝑠𝑎𝑙𝑙,𝑘

 

Links: 1 and 2 

http://gking.harvard.edu/files/matchp.pdf
http://www.ncbi.nlm.nih.gov/pubmed/18972455


assessing covariate balance 

 Assessing covariate balance 

 

 

 

 

 

 

 

 

 The observed difference between the treated and control 
groups is judged by the typical variation in that covariate. 

  High NICU Low NICU sd Δ/sd 

death 2.26% 1.25% 13.67% 0.07 

birth weight (g)         2,454          2,693              739  -0.32 

gestational age (months)         34.61          35.69             2.76  -0.39 

  High NICU Low NICU sd Δ/sd 

death 1.55% 1.94% 13.67% -0.03 

birth weight (g)         2,584          2,581              739  0.00 

gestational age (months)         35.14          35.13             2.76  0.00 

unmatched 

matched 



assessing covariate balance 



dealing with lots of observations 

 If you get lots of observations then you should be happy. 

 If you try to put them all into a matching algorithm then 
you will be sad. 

 The complexity of matching algorithms grows really fast so 
cutting down the problem into smaller chunks helps a lot. 

 Look at your covariates:  
 Is there one or two that are binary or categorical? 

 Break your data set into separate data sets and match within a given 
level of a variable (or variables). 

 Choose variables that are prognostically important. 

 It’s nice if these variables are close to uniformly distributed (e.g., p=0.5, 
or p=<1/3, 1/3, 1/3>). 



dealing with lots of observations 

 In the NICU example, we had millions of babies. 

 I sub-setted the data on gestational age (i.e., 26 weeks only 
matched to 26 weeks). 

 For larger gestational age groups, I further sub-setted on 
birth weight. 
 This was much less satisfactory because it’s more continuous. 

 I picked arbitrary boundaries and didn’t look back…  

 You can fret about the matching method, but do not 
confuse that for the quality of the match which is assessed 
by looking at the covariates. 



missing covariates 

 Missing covariates 

obs b_weight gest_age dose death e^(x) 

1 2412 36 1 0 

2 NA 29 1 1 

3 2569 36 1 0 

4 2443 34 1 0 

5 2569 36 0 0 

6 2436 NA 0 0 

7 2461 34 0 0 

8 2759 32 0 0 

9 2324 27 0 1 

10 2667 34 0 0 



missing covariates 

 Missing covariates 

obs b_weight bw_mis gest_age ga_mis dose death 

1 2412 0 36 0 1 0 

2 2515 1 29 0 1 1 

3 2569 0 36 0 1 0 

4 2443 0 34 0 1 0 

5 2569 0 36 0 0 0 

6 2436 0 33 1 0 0 

7 2461 0 34 0 0 0 

8 2759 0 32 0 0 0 

9 2324 0 27 0 0 1 

10 2667 0 34 0 0 0 

(i)  Build pscores using the imputed value and the missing indicators. 
(ii) Use imputed values and missing indicators in calculating the Mahalanobis distance. 



a small but important point 

you your trusty buddy 

Gimme the  
outcomes back! 

No. 

But I want an 
awesome p-value! 

Lock in your design, 
or that ain’t Science. 

Sorry, I don’t  
know what came over me! 



fin. 


