Advanced Statistical Methods
for Observational Studies

O




Mike’s office hours aren’t happening this Thursday.
I'm out of town.

If you’d like, we can schedule a call during that time, need to
email me.

Questions?



a matched study

Design of Observational Studies: chapter 7




We’re using pair matching as our “go to” model.

In lecture 03 we learned how to do
1:k matching
1:k matching with variable k
Full matching

Matching with more than one control is often better

because you're using more of the data than you would in a
pair match.



efficiency

Design of Observational Studies: chapter 8.7




Our primary concern is bias.

Bias is what the critiques are going to hit us on.
Bias doesn’t go away as we get more and more data.
Efficiency is good to pay attention to though.

If we assume our naive model and constant variance, and
we standardize to infinite number of controls then

number of controls 1

variance multiplier | 2.00 1.50 1.25 1.17 1.10 1.00

In the real world, going from 1:2 to 1:10 may actually not be
as beneficial as it looks... this table assumes perfect
matches are available.



unobserved confounding

O

There are more things in heaven and earth, Horatio,
Than are dreamt of in your philosophy.
- Hamlet (1.5.167-8)

Design of Observational Studies: chapter 3.4-3.8




naive model

O




lecture 02

What if we design our study such that Z; + Z;,, = 1?
Pr(Zk — 1,Zl — Ol ...,Zl +Zk — 1)

Pr(Z;=1,Z;=0]|...)
Pr(Zy;=1,Z;=0|...)+Pr(Z;=0,Z;=1|...)

”Ilc+0(1_”k)(1_1)+(1_0)

Pr(Zy=1,Z;=0|...)+Pr(Z;=0,Z;=1|...)

”i+0(1_”k)(1_1)+(1_0) 1

M0 (1) A-D+A=0) 470+ (1) (A-0)+(1-1) =3

IF we can do this then we get to use the same tools developed for RCTs!



lecture 03

Strongly Ignorable Treatment Assignment: Those that look
alike (in our data set) are alike
m; = Pr(Z; = 1rp, 1y, X wy) = Pr(Z; = 1]x;)

and

O<m<1lforalli=1,2,...,n
If two subjects have the same propensity score, then their
values of x may be different.

By SITA, if these two subjects have the same e(x) then the
differences in their x are not predictive of treatment
assignment (l.e., x 1 Z|e(x)).

Therefore the mismatches in x will be due to chance and
will tend to balance. ( )


http://biomet.oxfordjournals.org/content/70/1/41.full.pdf+html

No Interference Between Units (part of SUTVA): the
observation on one unit should be unaffected by particular
assignment of treatments to other units.

Can be written as:
Ri(Z; = z;) = Ri(Z7)
where Z; = z; indicates the treatment level for the it? unit

and Z* is a particular randomization from the set of all
randomizations that have Z; = z;.

Not true for most educational interventions and infectious
disease applications.

More details and


http://www.biostat.jhsph.edu/~dscharf/Causal/rubin.journ.psych.ed.pdf
http://www-stat.wharton.upenn.edu/~rosenbap/interference.pdf

Collect a bunch of covariates that are related to treatment
level and to the outcome.

Exact match if you can.

You probably can’t exact match so estimate propensity
scores and match on a hybrid of pscores and Mahalanobis
distance.

Play around with the matching until you achieve acceptable
comparison groups.

Die a little bit inside when you read your critiques’ reviews
because they point out all of the confounding that could
exist. Reevaluate life choices.



Sensitivity models are a means for moving past the “you
didn’t do X which could lead to bias.”

A usetul sensitivity model addresses one assumption at a
time, quantifying and making understandable the impact of
departures from the assumption being assessed.

We’re going to discuss the I' sensitivity model which
addresses the ignorable treatment assignment (SITA), not
interference (SUTVA).



A word of warning: many people find the I' sensitivity
model confusing.

This lecture will only give you a sense of what’s going on with this model;
it isn’t intended to be sufficient to fully understand I" sensitivity.

Read section 3.4-3.8.

If you are so inclined then this might be a very nice place to produce your
own framework for sensitivity.



Start with two observational units who have probability of
treatment 7; and r; (which may not be the same values).

Recall we defined this as m; = Pr(Z; = 1|ryy, 1oy, x5, uy).

We can talk about the odds of 1 receiving treatment:
Tty

1—7Ti

And we can put the odds into a ratio:
m;/(1—m;)
TL']/(l — Tl,'])




Our sensitivity model asserts that we can bound the odds

ratio like so:
1 m/d-m) .
7'[]/(1 — T[])
whenever x; = x;.

We are making a particular statement about how “far oft”
the actual treatment probabilities are from the pscore
(which only depends on the observed covariates).

If I' = 1 then this forces m; = ;.

If I' = 2 then m; can depart from 7;

For example: if r; = 1/ 2 and m; = 2/3 then
7/(1 = J. 5/(1 —05)

7Tj/(1—7T]) 0.6 /(1 —0. 6)




With this model in place we can think about “worst case”
scenarios regarding violations of SITA.

If someone is willing to give you a particular framework for
how the violation must occur (to the exclusion of all other
possible ways it can fail) then use that parametric model.

The I sensitivity model is non-parametric and we look at
the extreme values that might occur when I" > 1.
We’ll get ranges of p-values and estimates

Every study is sensitive to sufficiently large violations of the
SITA assumption. Just let ' — oo.

If we're going to make progress then the question becomes
what level of T is sufficiently large to proceed.



lecture 02

What if we design our study such that Z; + Z;,, = 1?
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Pr(Zy;=1,Z;=0|...)+Pr(Z;=0,Z;=1|...)

”Ilc+0(1_”k)(1_1)+(1_0)

Pr(Zy=1,Z;=0|...)+Pr(Z;=0,Z;=1|...)

”i+0(1_”k)(1_1)+(1_0) 1

M0 (1) A-D+A=0) 470+ (1) (A-0)+(1-1) =3

IF we can do this then we get to use the same tools developed for RCTs!



If we design our study such that Z; + Z,, = 1:

Ti

Pr(Zk — 1,Zl — Ol ...,Zl +Zk — 1) —

TL’i+TL'j

Combining this with the sensitivity model, and doing some

vaguely enjoyable algebra, we get:
1 TT; [
—— < <
14T TT; + T[j 14T

We get 2 if T’ = 1.



The randomization tests we have can be reworked under

the understanding that we can vary the odds ratio within
1 TT; [
< < ——
14T TT; + T[j 14T

Setting — = 1£F will get you one extreme.
i

Setting ﬁ = will get you the other.

TL’l+TL' j
For notational purposes, let’s say that the usual Wilcoxon
signed rank test (whenI' = 1) is written as T.

Then we’ll write the test statistic under our sensitivity
model as T.



We can calculate the exact distribution of T under either
extreme, but for large matched sets it’ll be easier (and not
far off) to use an approximation.

The T has known expected value and variance

T I(I+1
E[T]=1+F(;r)
_ [ I+ 121+ 1)
var(l) = 451y 6

where I is the number of matched pairs.



We can calculate the exact distribution of T under either
extreme, but for large matched sets it’ll be easier (and not
far off) to use an approximation.

The T has known expected value and variance

1 II+1
E[T]=1+F(;r)
_ [ I+ 121+ 1)
var(l) = 451y 6

where I is the number of matched pairs.



The standardized deviate of T (the Wilcoxon signed rank
statistic) can be approximated using:

T — E[T]
Jvar(T)

~N(0,1)




obs b_weight gest_age

dose

1 2412 36 1 0.12
2 2205 29 1 0.24
3 2569 36 1 0.02
4 2443 34 1 -0.16
5 2569 36 0 0.58
6 2436 35 0 -0.22
7 2461 34 0 -0.07
8 2759 32 0 -0.55
9 2324 27 0 -0.36
10 2667 34 0 0.28
500 2349 33 1 -0.55

Similar to data set from lecture 03, but different number of observations and outcome of interest.




obs b_weight gest_age

dose

1 2412 36 1 0.12
2 2205 29 1 0.24
3 2569 36 1 0.02
4 2443 34 1 -0.16
5 2569 36 0 0.58
6 2436 35 0 -0.22
7 2461 34 0 -0.07
8 2759 32 0 -0.55
9 2324 27 0 -0.36
10 2667 34 0 0.28
500 2349 33 1 -0.55

Outcome of interest: Hearing is some standardized metric with population mean=0 and sd=1.




Create 250 pair matches.

Using T, the usual Wilcoxon signed rank statistic:
We know that E[T]=15,688 and sd(T)=812

Get T=13,250
Using the approximation:
T — E[T]
~N(0,1)
\/ var(T)

13,250—-15,688

812
naive model.

= —3.00, which has a small p-value, under the



Create 250 pair matches.
Using T, the usual Wilcoxon signed rank statistic:
We know that E[T]=16,540 and sd(T)=810

Get T=13,250 - 0
Using the approximation: ElTl =177
I — E[T] ~N(O,1) Set '=1.11
Jvar(T)

13,250—-16,540
810

= —4.00, which has a small p-value.



Create 250 pair matches.
Using T, the usual Wilcoxon signed rank statistic:
We know that E[T]=14,835 and sd(T)=810

Get T=13,250 - T
Using the approximation: ElTl =177
T — E[T] “N(0.1) Set '=1.11
Jvar(T)

13,250—-14,835
810

Interpretation: If there was a small amount of bias I' = 1.12
then this would nullify our qualitative claims.

= —1.95, which has a p-value close to 0.05.



In practice, software will do this for you and you will
interpret.

The key to keep in mind is that there are two different way
things could go wrong: (i) units could be sorted into
treatment or (i1) into control.

This gives rise to three different distributions:

Naive model: T~ N(I(I+1) I(I+1;ELZI+1))

r I1(I1+1) r I(I+1)(21+1)
14T 2 (142 6 )
1 I(I+1) r Id+1)(21+1)

2 ' (1+I)2 6 )

Biased toward one way: T~N(

Biased other way: T~N(



Use the new distributions to test your statistic to see where
its critical values are.

This will lead you to provide wider intervals for everything:

If you had a point estimate of (to pick a random number): 5 then, for a
particular I', you may end up with a “point estimate” of (4, 6). This new
interval is not due to randomness in assignment, it is due to the
difference in treatment assignment probabilities.

If you had a p-value of 0.012, for a particular I', you may end up with a
p-value interval of (0.032, 0.0001).



In practice, it’s common to just report the value of I' which
nullifies your qualitative conclusions (i.e., goes from
significant to insignificant), and to help the reader in
interpreting the meaning of I'.

For example, I' = 2 means that within a given pair — even
though the two matched individuals looked identical in the
data set — the actual odds of assignment was up to twice as
likely for one member in the pair than the other. Likely this
difference is due to the unobserved covariates.

The question then becomes: Is what’s left lingering out
there, outside of your data set, enough to cause that level of
confounding?



practical issue

O

venturing out of the ivory tower.

Design of Observational Studies: chapter 9




Assessing covariate balance

unmatched
High NICU Low NICU sd A/sd

death 2.26% 1.25% 13.67% 0.07

birth weight (g) 2,454 2,693 739 -0.32
gestational age (months) 34.61 35.69 2.76 -0.39

matched
High NICU Low NICU sd A/sd

death 1.55% 1.94% 13.67% -0.03
birth weight (g) 2,584 2,581 739 0.00
gestational age (months) 35.14 35.13 2.76 0.00




Standardized difference

Create a weighted standard deviation using pre-match
observations (i.e., use all observations).

2 2
Stk T Sck

Sallk =

\ 2
where s?, is the standard deviation of covariate x;,
amongst the treated group prior to matching.

Divide the difference of the observed means by the
weighted standard deviation.

Xtk — Xck

Sall,k
Links: 1 and


http://gking.harvard.edu/files/matchp.pdf
http://www.ncbi.nlm.nih.gov/pubmed/18972455

Assessing covariate balance

unmatched
High NICU Low NICU sd A/sd

death 2.26% 1.25% 13.67% 0.07

birth weight (g) 2,454 2,693 739 -0.32

gestational age (months) 34.61 35.69 2.76 -0.39

matched
High NICU Low NICU sd A/sd

death 1.55% 1.94% 13.67% -0.03
birth weight (g) 2,584 2,581 739 0.00
gestational age (months) 35.14 35.13 2.76 0.00

The observed difference between the treated and control
groups is judged by the typical variation in that covariate.



assessing covariate balance

O

overlapping histograms of e(x) for treated and control
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estimated propensity score




If you get lots of observations then you should be happy.

If you try to put them all into a matching algorithm then
you will be sad.

The complexity of matching algorithms grows really fast so
cutting down the problem into smaller chunks helps a lot.

Look at your covariates:
Is there one or two that are binary or categorical?

Break your data set into separate data sets and match within a given
level of a variable (or variables).

Choose variables that are prognostically important.

It’s nice if these variables are close to uniformly distributed (e.g., p=0.5,
or p=<1/3,1/3,1/3>).



In the NICU example, we had millions of babies.

I sub-setted the data on gestational age (i.e., 26 weeks only
matched to 26 weeks).

For larger gestational age groups, I further sub-setted on
birth weight.

This was much less satisfactory because it’s more continuous.
I picked arbitrary boundaries and didn’t look back...

You can fret about the matching method, but do not

confuse that for the quality of the match which is assessed
by looking at the covariates.



» Missing covariates

obs b_weight gest_age dose death e(x)
1 2412 36 1 0
2 NA 29 1 1
3 2569 36 1 0
4 2443 34 1 0
5 2569 36 0 0
6 2436 NA 0 0
7 2461 34 0 0
8 2759 32 0 0
9 2324 27 0 1

10 2667 34 0 0




» Missing covariates

obs b_weight bw_mis gest_age ga_mis dose death
1 2412 0 36 0 1 0
2 2515 1 29 0 1 1
3 2569 0 36 0 1 0
4 2443 0 34 0 1 0
5 2569 0 36 0 0 0
6 2436 0 33 1 0 0
7 2461 0 34 0 0 0
8 2759 0 32 0 0 0
9 2324 0 27 0 0 1
10 2667 0 34 0 0 0

(i) Build pscores using the imputed value and the missing indicators.
(i1) Use imputed values and missing indicators in calculating the Mahalanobis distance.



Gimme the
outcomes back!

Sorry, I don’t

know what came over me!

you your trusty buddy






