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REGRESSION-DISCONTINUITY ANALYSIS:

AN ALTERNATIVE TO THE EX POST FACTO EXPERIMENT!

DONALD L. THISTLETHWAITE
National Merit Scholarship Corporation

While the term “‘ex post facto experi-
ment” could refer to any analysis of
records which provides & quasi-experi-
mental test of a causal hypothesis, as
deseribed by Chapin (1938) and Green-
wood (1945), it has come to indicate
more specifically the mode of analysis
in which two groups—an experimental
and a control group—are selected
through matching to yield a quasi-
experimental comparison. In such
studies the groups are presumed, as a
result of matching, to have been equiv-
alent prior to the exposure of the exper-
imental group to some potentially
change inducing event (the ‘‘experi-
mental treatment”). If the groups dif-
fer on subsequent measures and if
there are no plausible rival hypotheses
which might account for the differ-
ences, it is inferred that the experi-

! This study is & part of the research pro-
gram of the National Merit Scholarship
Corporation. This research was supported
by the National Science Foundation, the
0ld Dominion Foundation, and by Ford
Foundation grants to the National Merit
Scholarship Corporation. The participa-
tion of the second author was made possible
through the Northwestern University Car-
negie Corporation Project in Psychology-
Education. The mode of analysis illustrated
in Figure 1 of this paper was first sug-
gested by the second author, and will be
presented in a chapter entitled ‘“‘Experi-
mental Designs in Research on Teaching’
in the forthcoming NEA, AERA Handbook
of Research on Teaching to be published by
Rand McNally and edited by N. L. Gage.
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mental treatment has caused the
observed differences.

This paper has three purposes: first,
it presents an alternative mode of
analysis, called regression-discon-
tinuity analysis, which we believe can
be more confidently interpreted than
the ex post facto design; second, it
compares the results obtained when
both modes of analysis are applied to
the same data; and, third, it qualifies
interpretations of the ex post facto
study recently reported in this journal
(Thistlethwaite, 1959).

Two groups of near-winners in a
national scholarship competition were
matched on several background vari-
ables in the previous study in order to
study the motivational effect of public
recognition. The results suggested that
such recognition tends to increase the
favorableness of attitudes toward
intellectualism, the number of students
planning to seek the MD or PhD
degree, the number planning to become
college teachers or scientific re-
searchers, and the number who succeed
in obtaining scholarships from other
scholarship granting agencies. The
regression-discontinuity analysis to be
presented here confirms the effects
upon success in winning scholarships
from other donors but negates the
inference of effects upon attitudes and
is equivocal regarding career plans.
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London School of Economics
Equation Chapter 1 Section 1The Regression Discontinuity Design

Sometimes whether something happens to you or not depends on your ‘score’ on a
particular variable. You get a scholarship if you get above a certain mark in an exam,
you get given remedial education if you get below a certain level, a policy is
implemented if it gets more than 50% of the vote in a ballot, your sentence for a
criminal offence is higher if you are above a certain age (an ‘adult’) etc etc.

All of these examples are candidates for an application of the regression discontinuity
design. The essential element of a regression discontinuity design is that the
probability of assignment to treatment depends in a discontinuous way on some
observable variable W.

The simplest (and most common) form of the RDD has assignment to treatment being
based on W being above some critical value w, - I will use this case in what follows.

Note that, in some sense, the method of assignment to treatment is the very opposite
here to that in random assignment — it is a deterministic function of some observable
variable. But, it turns out that, in a sense I will explain, assignment to treatment is as

‘good as random’ in the neighbourhood of w,, the discontinuity.

The basic RDD estimator can be understood very simply. Suppose we consider
individuals with W in the interval [w, —&,w, ). These are all in the control group so
the outcome we will observe for these is y,. Suppose that the expected value of y,
given W can be written as:

E(yW.X =0)=g,(W) (1)
Take a first-order Taylor series expansion of this about the point W =w,. We can
then write:
8o (W =3) =g, (w,) =98, "'(w) (2)
Hence for the group of people with W in the interval [w0 —J,w,) we will have
approximately that:
E(y|wy—8<W <w,)=g,(w,)—8o ' (w,) E(S|wy = <W <w) (3)

Now do the same exercise for individuals with W in the interval [w,,w, +J]. These
are all in the treatment group so the outcome we will observe for these is y,. Suppose
that the expected value of y, given W can be written as:

E(yW.X =1)=g (W) @
Take a first-order Taylor series expansion of this about the point W =w,. We can
then write:

8 (wy+0) =g (w)+g'(w) &)
Hence for the group of people with W in the interval [wo, W, +0 ] we will have

approximately that:
E(y|w, SW <w,+8) =g, (w,)+g (W) E(S|w, W <w,+6) (6)
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Economics 696F: Lecture Note 13

Regression Discontinuity Design

Examples:

Thistlewaite and Campbell (1960): scholarship and career choice

van der Klaauw (1997): financial aid and enrollment in college

Angrist and Lavy (1997): class size and test scores

Black (1999): school district and house prices

Basic Setup:

Yi(0), Y:(1): potential outcomes

T; =0, 1: treatment

Observed outcome: Y; := T;Y;(1) + (1 — T;)Y;(0).

Z;: observed variable, scalar and continuous

“Sharp design”:

T, = 1(Z; > z),

where 2z is fixed and known to the data analyst.

“Fuzzy Design”: Pr(T; = 1|Z; = z) has a discontinuity at z = 2.

Assumption RD: The following limits exist:

Tt :=1lim Pr(T =1|Z = 2),

zlzo

T~ :=lim Pr(T =1|Z = z),

2Tz0
and T £ T,
Note that for the sharp design, 7t =1 and T~ = 0.

We will focus on the sharp design; for extensions to the fuzzy design, see Hahn-Todd-
van der Klaauw.
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Abstract

In regression discontinuity (RD) designs for evaluating causal effects of interventions, assignment to a treatment is
determined at least partly by the value of an observed covariate lying on either side of a fixed threshold. These designs were
first introduced in the evaluation literature by Thistlewaite and Campbell [1960. Regression-discontinuity analysis: an
alternative to the ex-post Facto experiment. Journal of Educational Psychology 51, 309-317] With the exception of a few
unpublished theoretical papers, these methods did not attract much attention in the economics literature until recently.
Starting in the late 1990s, there has been a large number of studies in economics applying and extending RD methods. In
this paper we review some of the practical and theoretical issues in implementation of RD methods.
© 2007 Elsevier B.V. All rights reserved.

JEL classification: C14; C21

Keywords: Regression discontinuity; Treatment effects; Nonparametric estimation

1. Introduction

Since the late 1990s there has been a large number of studies in economics applying and extending
regression discontinuity (RD) methods, including Van Der Klaauw (2002), Black (1999), Angrist and Lavy
(1999), Lee (2007), Chay and Greenstone (2005), DiNardo and Lee (2004), Chay et al. (2005), and Card et al.
(2006). Key theoretical and conceptual contributions include the interpretation of estimates for fuzzy
regression discontinuity (FRD) designs allowing for general heterogeneity of treatment effects (Hahn et al.,
2001, HTV from hereon), adaptive estimation methods (Sun, 2005), specific methods for choosing bandwidths
(Ludwig and Miller, 2005), and various tests for discontinuities in means and distributions of non-affected
variables (Lee, 2007; McCrary, 2007).

In this paper, we review some of the practical issues in implementation of RD methods. There is relatively
little novel in this discussion. Our general goal is instead to address practical issues in implementing RD
designs and review some of the new theoretical developments.

After reviewing some basic concepts in Section 2, the paper focuses on five specific issues in the
implementation of RD designs. In Section 3 we stress graphical analyses as powerful methods for illustrating

*Corresponding author. Tel.: + 1604 8222092; fax: + 1604822 5915.
E-mail addresses: imbens@harvard.edu (G.W. Imbens), tlemieux@interchange.ubc.ca (T. Lemieux).

0304-4076/$ - see front matter © 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.jeconom.2007.05.001
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616 G. W. Imbens, T. Lemieux | Journal of Econometrics 142 (2008) 615-635

the design. In Section 4 we discuss estimation and suggest using local linear regression methods using only the
observations close to the discontinuity point. In Section 5 we propose choosing the bandwidth using cross-
validation. In Section 6 we provide a simple plug-in estimator for the asymptotic variance and a second
estimator that exploits the link with instrumental variable methods derived by HTV. In Section 7 we discuss a
number of specification tests and sensitivity analyses based on tests for (a) discontinuities in the average values
for covariates, (b) discontinuities in the conditional density of the forcing variable, as suggested by McCrary,
and (c) discontinuities in the average outcome at other values of the forcing variable.

2. Sharp and FRD designs

2.1. Basics

Our discussion will frame the RD design in the context of the modern literature on causal effects and
treatment effects, using the Rubin Causal Model (RCM) set up with potential outcomes (Rubin, 1974;
Holland, 1986; Imbens and Rubin, 2007), rather than the regression framework that was originally used in this
literature. For a general discussion of the RCM and its use in the economic literature, see the survey by Imbens
and Wooldridge (2007).

In the basic setting for the RCM (and for the RD design), researchers are interested in the causal effect of a
binary intervention or treatment. Units, which may be individuals, firms, countries, or other entities, are either
exposed or not exposed to a treatment. The effect of the treatment is potentially heterogenous across units. Let
Y:(0) and Y;(1) denote the pair of potential outcomes for unit i: Y;(0) is the outcome without exposure to the
treatment and Y;(1) is the outcome given exposure to the treatment. Interest is in some comparison of Y;(0)
and Y;(1). Typically, including in this discussion, we focus on differences Y;(1) — Y;(0). The fundamental
problem of causal inference is that we never observe the pair Y;(0) and Y;(1) together. We therefore typically
focus on average effects of the treatment, that is, averages of Y;(1) — Y;(0) over (sub)populations, rather than
on unit-level effects. For unit i we observe the outcome corresponding to the treatment received. Let W; €
{0,1} denote the treatment received, with 1W; = 0 if unit i was not exposed to the treatment, and W, =1
otherwise. The outcome observed can then be written as

Y«(0) if W;=0,
In addition to the assignment W¥; and the outcome Y;, we may observe a vector of covariates or pretreatment
variables denoted by (X, Z;), where X; is a scalar and Z; is an M-vector. A key characteristic of X; and Z; is
that they are known not to have been affected by the treatment. Both X; and Z; are covariates, with a special
role played by X; in the RD design. For each unit we observe the quadruple (Y;, W, X;, Z;). We assume that
we observe this quadruple for a random sample from some well-defined population.

The basic idea behind the RD design is that assignment to the treatment is determined, either completely or
partly, by the value of a predictor (the covariate X;) being on either side of a fixed threshold. This predictor
may itself be associated with the potential outcomes, but this association is assumed to be smooth, and so any
discontinuity of the conditional distribution (or of a feature of this conditional distribution such as the
conditional expectation) of the outcome as a function of this covariate at the cutoff value is interpreted as
evidence of a causal effect of the treatment.

The design often arises from administrative decisions, where the incentives for units to participate in a
program are partly limited for reasons of resource constraints, and clear transparent rules rather than
discretion by administrators are used for the allocation of these incentives. Examples of such settings abound.
For example, Hahn et al. (1999) study the effect of an anti-discrimination law that only applies to firms with at
least 15 employees. In another example, Matsudaira (2007) studies the effect of a remedial summer school
program that is mandatory for students who score less than some cutoff level on a test (see also Jacob and
Lefgren, 2004). Access to public goods such as libraries or museums is often eased by lower prices for
individuals depending on an age cutoff value (senior citizen discounts and discounts for children under some
age limit). Similarly, eligibility for medical services through medicare is restricted by age (Card et al., 2004).
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Fig. 2. Potential and observed outcome regression functions.

2.2. The sharp regression discontinuity design

It is useful to distinguish between two general settings, the sharp and the fuzzy regression discontinuity
(SRD and FRD from hereon) designs (e.g., Trochim, 1984, 2001; HTV). In the SRD design the assignment W;
is a deterministic function of one of the covariates, the forcing (or treatment-determining) variable X'

W= 1{X:>c).

All units with a covariate value of at least ¢ are assigned to the treatment group (and participation is
mandatory for these individuals), and all units with a covariate value less than ¢ are assigned to the control
group (members of this group are not eligible for the treatment). In the SRD design we look at the
discontinuity in the conditional expectation of the outcome given the covariate to uncover an average causal
effect of the treatment:

lllfl [E[Y,|Xl = )C] — 11?’1 [E[Y,|X, = x],

which is interpreted as the average causal effect of the treatment at the discontinuity point
tsrp = E[Yi(1) — Yi(0)|X; = c]. (2.1)

Figs. 1 and 2 illustrate the identification strategy in the SRD setup. Based on artificial population values, we
present in Fig. 1 the conditional probability of receiving the treatment, Pr(W = 1|X = x) against the covariate
x. At x = 6 the probability jumps from 0 to 1. In Fig. 2, three conditional expectations are plotted. The two
continuous lines (partly dashed, partly solid) in the figure are the conditional expectations of the two potential
outcomes given the covariate, u,,(x) = E[Y(w)|X = x], for w =0, 1. These two conditional expectations are
continuous functions of the covariate. Note that we can only estimate uy(x) for x<c and u,(x) for x>c.

"Here we take X; to be a scalar. More generally, the assignment can be a function of a vector of covariates. Formally, we can write this
as the treatment indicator being an indicator for the vector X; being an element of a subset of the covariate space, or

Wi=1X;e Xy},
where X; C X, and X is the covariate space.
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ASSIGNMENT TO TREATMENT GROUP ON THE BASIS OF A COVARIATE

Donald B. Rubin

Educational Testing Service

Key words: Non-Randomized Studies; Observational Studies;
Covariance Adjustment; Causal Inference; Experimental Design;
Treatment Assignment; Average Treatment Effects

ABSTRACT

When assignment to treatment group is made solely on
the basis of the value of a covariate, X , effort should be
concentrated on estimating the conditional expectations of
the dependent variable Y given X in the treatment and
control groups. One then averages the difference between
these conditional expectations over the distribution of X
in the relevant population. There is no need for concern
about "other" sources of bias, e.g., unreliability of X ,
unmeasured background variables. If the conditional expecta-
tions are parallel and linear, the proper regression adjust-

ment is the simple covariance adjustment. However, since
the quality of the resulting estimates may be sensitive to
the adequacy of the underlying model, it is wise to search
for nonparallelism and nonlinearity in these conditional
expectations. Blocking on the values of X 1is also
appropriate, although the quality of the resulting estimates
may be sensitive to the coarseness of the blocking employed.
In order for these techniques to be useful in practice,
there must be either substantial overlap in the distribution
of X in the treatment groups or strong prior information.

1. INTRODUCTION

In some studies, the experimental units are divided
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Rubin's Thm, HW illustration

#### aside for week 5, assignment based on covariate

> # note looking ahead week 5: what if we did ancova using Y uc as covariate, assignment based on
> Gnegancova = lm(Y_utGneq ~ Gneq + Y uc)

> summary (Gnegancova)

Call:
Im(formula = Y utGneq ~ Gneq + Y_uc)

Residuals:
Min 10 Median 30 Max
-2.01254 -0.14568 0.01800 0.12904 2.13266

Coefficients:
Estimate Std. Error t value Pr(>|t])
(Intercept) -1.50115 0.87795 -1.71 0.0905 .
Gneq 1.95684 0.18445 10.61 <2e-16 ***
Y uc 1.16248 0.09449 12.30 <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.7054 on 97 degrees of freedom
Multiple R-Squared: 0.8813, Adjusted R-squared: 0.8789
F-statistic: 360.1 on 2 and 97 DF, p-value: < 2.2e-16

> # gets back to ACE = 2 coeff of Gneqg!!
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The Regression-Discontinuity Design

The regression-discontinuity design. What a terrible name! In everyday
language both parts of the term have connotations that are primarily negative.
To most people "regression" implies a reversion backwards or a return to some
earlier, more primitive state while "discontinuity” suggests an unnatural jump
or shift in what might otherwise be a smoother, more continuous process. To a
research methodologist, however, the term regression-discontinuity (hereafter
labeled "RD") carries no such negative meaning. Instead, the RD design is seen
as a useful method for determining whether a program or treatment is effective.

The label "RD design" actually refers to a set of design variations. In its
simplest most traditional form, the RD design is a pretest-posttest
program-comparison group strategy. The unique characteristic which sets RD
designs apart from other pre-post group designs is the method by which
research participants are assigned to conditions. In RD designs, participants are
assigned to program or comparison groups solely on the basis of a cutoff score
on a pre-program measure. Thus the RD design is distinguished from
randomized experiments (or randomized clinical trials) and from other
quasi-experimental strategies by its unique method of assignment. This cutoff
criterion implies the major advantage of RD designs -- they are appropriate
when we wish to target a program or treatment to those who most need or
deserve it. Thus, unlike its randomized or quasi-experimental alternatives, the
RD design does not require us to assign potentially needy individuals to a
no-program comparison group in order to evaluate the effectiveness of a
program.

The RD design has not been used frequently in social research. The most
common implementation has been in compensatory education evaluation
where school children who obtain scores which fall below some predetermined
cutoff value on an achievement test are assigned to remedial training designed
to improve their performance. The low frequency of use may be attributable to
several factors. Certainly, the design is a relative latecomer. Its first major field
tests did not occur until the mid-1970s when it was incorporated into the
nationwide evaluation system for compensatory education programs funded
under Title I of the Elementary and Secondary Education Act (ESEA) of 1965.
In many situations, the design has not been used because one or more key
criteria were absent. For instance, RD designs force administrators to assign
participants to conditions solely on the basis of quantitative indicators thereby
often impalatably restricting the degree to which judgment, discretion or
favoritism may be used. Perhaps the most telling reason for the lack of wider
adoption of the RD design is that at first glance the design doesn't seem to
make sense. In most research, we wish to have comparison groups that are
equivalent to program groups on pre-program indicators so that post-program
differences may be attributed to the program itself. But because of the cutoff
criterion in RD designs, program and comparison groups are deliberately and
maximally different on pre-program characteristics, an apparently insensible

5/2/2007 11:44 PM http://www.socialresearchmethods.net/k...
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Figure 2. Regression-Discontinuity Design with Ten-point Treatment Effect.

Figure 2 is identical to Figure 1 except that all points to the left of the cutoff
(i.e., the treatment group) have been raised by 10 points on the posttest. The
dashed line in Figure 2 shows what we would expect the treated group's
regression line to look like if the program had no effect (as was the case in
Figure 1).

It is sometimes difficult to see the forest for the trees in these types of bivariate
plots. So, let's remove the individual data points and look only at the regression
lines. The plot of regression lines for the treatment effect case of Figure 2 is
shown in Figure 3.

control

group
regression

Figure 3. Regression lines for the data shown in Figure 2.

On the basis of Figure 3, we can now see how the RD design got its name - - a
program effect is suggested when we observe a "jump" or discontinuity in the
regression lines at the cutoff point. This is illustrated in Figure 4.

5/2/2007 11:44 PM http://www.socialresearchmethods.net/k... 4 0of 10


rag
Highlight


If there is a treatment effect, there will be a...
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Figure 4. How the Regression-Discontinuity Design got its name.

The Logic of the RD Design

The discussion above indicates what the key feature of the RD design is:
assignment based on a cutoff value on a pre-program measure. The cutoff
rule for the simple two-group case is essentially:

e all persons on one side of the cutoff are assigned to one group...
e all persons on the other side of the cutoff are assigned to the other
e need a continuous quantitative pre-program measure

Selection of the Cutoff. The choice of cutoff value is usually based on one of
two factors. It can be made solely on the basis of the program resources that are
available. For instance, if a program only has the capability of handling 25
persons and 70 people apply, one can choose a cutoff point that distinguishes
the 25 most needy persons from the rest. Alternatively, the cutoff can be
chosen on substantive grounds. If the pre-program assignment measure is an
indication of severity of illness measured on a 1 to 7 scale and physicians or
other experts believe that all patients scoring 5 or more are critical and fit well

the criteria defined for program participants then a cutoff value of 5 may be
used.

Interpretation of Results.. In order to interpret the results of an RD design,
one must know the nature of the assignment variable, who received the
program and the nature of the outcome measure. Without this information,
there is no distinct outcome pattern which directly indicates whether an effect
1s positive or negative.

To illustrate this, we can construct a new hypothetical example of an RD
design. Let us assume that a hospital administrator would like to improve the
quality of patient care through the institution of an intensive quality of care
training program for staff. Because of financial constraints, the program is too
costly to implement for all employees and so instead it will be administered to
the entire staff from specifically targeted units or wards which seem most in
need of improving quality of care. Two general measures of quality of care are
available. The first is an aggregate rating of quality of care based on observation
and rating by an administrative staff member and will be labeled here the QOC
rating. The second is the ratio of the number of recorded patient complaints

5/2/2007 11:44 PM http://www.socialresearchmethods.net/k... 50f 10
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Figure 13. Regression results for final model.

The regression egquation is

posteff = 49.8 + 0.8l4*precut + 9.59%group
Predictor Coef Stdev t-ratio
Constant 49.5421 0.5786 B6.14
precut 0.81379 0.04138 19.67
group 9.8875 0.9515 10.39
5 = 6.633 R-sg = 47.5% R-=dg{adj)

P
0.000
0.000
0.000

ancova

47.3%

We see in these results that the treatment effect and SE are almost identical to
the previous model and that the treatment effect estimate is an unbiased
estimate of the true effect of 10 points. We can also see that all of the terms in

the final model are statistically significant, suggesting tha
model the data and should not be eliminated.

t they are needed to

So, what does our model look like visually? Figure 14 shows the original

bivariate distribution with the fitted regression model.

Figure 14. Bivariate distribution with final regression model.

a0 —

70 —

posteff

I
0 B0 70

fre

80 490

I
100

Clearly, the model fits well, both statistically and visually.

Copyright ©2006, William M.K. Trochim, All Rights Reserved
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coimpliicating tne amnalysis somcewilat.

The Curvilinearity Problem

The major problem in analyzing data from the RD design is model
misspecification. As will be shown below, when you misspecify the statistical
model, you are likely to get biased estimates of the treatment effect. To
introduce this idea, let's begin by considering what happens if the data (i.e., the
bivariate pre-post relationship) are curvilinear and we fit a straight-line model
to the data.

Figure 1. A curvilinear relationship.

If the true pre-post relationship is not linear... value of overlap;

80 — not step-function
70 assignment, prob
o« B0 —
5
B 5p |
o
40
30
20 -

T T T T T T T T T T T
0O 10 20 30 40 50 60O VO 80 90 100

pre

Figure 1 shows a simple curvilinear relationship. If the curved line in Figure 1
describes the pre-post relationship, then we need to take this into account in
our statistical model. Notice that, although there is a cutoff value at 50 in the
figure, there is no jump or discontinuity in the line at the cutoff. This indicates
that there is no effect of the treatment.
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Package ‘rdd’

January 27, 2015

Maintainer Drew Dimmery <drewd@nyu. edu>
Author Drew Dimmery

Version 0.56

License Apache License (== 2.0)

Title Regression Discontinuity Estimation

Description This package provides the tools to undertake estimation in
Regression Discontinuity Designs. Both sharp and fuzzy designs are
supported. Estimation is accomplished using local linear regression.
A provided function will utilize Imbens-Kalyanaraman optimal
bandwidth calculation. A function is also included to test the
assumption of no-sorting effects.

Type Package
Date 2013-10-11
Depends R (>=2.15.0), sandwich, Imtest, AER, Formula

Collate 'kernelwts.R' 'DCdensity.R' 'TKbandwidth.R' 'RDestimate.R'
'plot.RD.R' 'summary.RD.R' 'rdd-package.R' 'print.RD.R’

NeedsCompilation no
Repository CRAN
Date/Publication 2013-10-12 00:25:44

R topics documented:

rdd-package . . . . ...
DCdensity . . . . . . . . e
IKbandwidth . . . . . . . ...
kernelwts . . . . . . e
PIOtRD . . e
printRD . . . . L
RDestimate . . . . . . . . . e
summary.RD . . . . oL

Index
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6 RDestimate

plot.RD Plot of the Regression Discontinuity

Description

Plot the relationship between the running variable and the outcome

Usage

## S3 method for class ’RD’
plot(x, gran = 400, bins = 100, which =1,

range, ...)
Arguments

X rd object, typically the result of RDestimate

gran the granularity of the plot. This specifies the number of points to either side of
the cutpoint for which the estimate is calculated.

bins if the dependent variable is binary, include the number of bins within which to
average

which identifies which of the available plots to display. For a sharp design, the only

possibility is 1, the plot of the running variable against the outcome variable.
For a fuzzy design, an additional plot, 2, may also be displayed, showing the
relationship between the running variable and the treatment variable. Both plots
may be displayed with which=c(1,2).

range the range of values of the running variable for which to plot. This should be a
vector of length two of the format c(min,max). To plot from the minimum to

non

the maximum value, simply enter c("min", "max").

unused

Author(s)

Drew Dimmery <<drewd@nyu.edu>>

RDestimate Regression Discontinuity Estimation

Description

RDestimate supports both sharp and fuzzy RDD utilizing the AER package for 2SLS regression
under the fuzzy design. Local linear regressions are performed to either side of the cutpoint using
the Imbens-Kalyanaraman optimal bandwidth calculation, IKbandwidth.
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RDestimate 7

Usage

RDestimate(formula, data, subset = NULL, cutpoint = NULL,
bw = NULL, kernel = "triangular”, se.type = "HC1",
cluster = NULL, verbose = FALSE, model = FALSE,
frame = FALSE)

Arguments

formula the formula of the RDD. This is supplied in the format of y ~ x for a simple
sharp RDD, ory ~ x | c1 + c2 for a sharp RDD with two covariates. Fuzzy
RDD may be specified asy ~ x +  z where x is the running variable, and z
is the endogenous treatment variable. Covariates are then included in the same
manner as in a sharp RDD.

data an optional data frame

subset an optional vector specifying a subset of observations to be used

cutpoint the cutpoint. If omitted, it is assumed to be 0.

bw the bandwidth. If omitted, it is calculated using the Imbens-Kalyanaraman
method.

kernel a string specifying the kernel to be used in the local linear fitting. "triangular”
kernel is the default and is the "correct" theoretical kernel to be used for edge es-
timation as in RDD (Lee and Lemieux 2010). Other options are "rectangular”,
"epanechnikov”, "quartic”, "triweight"”, "tricube”, "gaussian” and "cosine".

se.type this specifies the robust SE calculation method to use. Options are, as in vcovHC,
HHC3H’ Hconst"’ IIHCII, IIHCOII, IIHC1 II’ IIHCZII’ IIHC4II’ IIHC4mH’ ”HCSH. This Op_
tion is overriden by cluster.

cluster an optional vector specifying clusters within which the errors are assumed to be
correlated. This will result in reporting cluster robust SEs. This option overrides
anything specified in se. type. It is suggested that data with a discrete running
variable be clustered by each unique value of the running variable (Lee and Card
2008).

verbose will provide some additional information printed to the terminal.

frame logical. If TRUE, the data frame used in model fitting will be returned.

model logical. If TRUE, the model object will be returned.

Value

RDestimate returns an object of class "RD". The functions summary and plot are used to obtain
and print a summary and plot of the estimated regression discontinuity. The object of class RD is a
list containing the following components:

type a string denoting either "sharp” or "fuzzy"” RDD.

est the estimate of the discontinuity in the outcome under a sharp design, or the
Wald estimator in the fuzzy design

se the standard error

z the z statistic
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RDestimate 9

ci the matrix of the 95 c("CI Lower Bound”,”CI Upper Bound") for each
corresponding bandwidth

bw numeric vector of each bandwidth used in estimation

obs vector of the number of observations within the corresponding bandwidth

call the matched call

na.action the observations removed from fitting due to missingness

model (if requested) For a sharp design, a list of the 1m objects is returned. For a

fuzzy design, a list of lists is returned, each with two elements: firststage,
the first stage 1m object, and iv, the ivreg object. A model is returned for each
corresponding bandwidth.

frame (if requested) Returns the model frame used in fitting.

Author(s)

Drew Dimmery <<drewd@nyu.edu>>

References

Lee, David and Thomas Lemieux. (2010) "Regression Discontinuity Designs in Economics," Jour-
nal of Economic Literature. 48(2): 281-355. http://www.aeaweb.org/articles.php?doi=10.
1257/jel.48.2.281

Imbens, Guido and Thomas Lemieux. (2010) "Regression discontinuity designs: A guide to prac-
tice," Journal of Econometrics. 142(2): 615-635. http://dx.doi.org/10.1016/j.jeconom.
2007.05.001

Lee, David and David Card. (2010) "Regression discontinuity inference with specification error,"
Journal of Econometrics. 142(2): 655-674. http://dx.doi.org/10.1016/j.jeconom.2007.05.
003

Angrist, Joshua and Jorn-Steffen Pischke. (2009) Mostly Harmless Econometrics. Princeton:
Princeton University Press.

See Also

summary.RD, plot.RD, DCdensity IKbandwidth, kernelwts, vcovHC, ivreg, 1m

Examples

x<-runif(1000,-1,1)

cov<-rnorm(1000)

y<=3+2*x+3*cov+10*(x>=0)+rnorm(1000)

RDestimate(y~x)

# Efficiency gains can be made by including covariates
RDestimate(y~x|cov)



http://www.aeaweb.org/articles.php?doi=10.1257/jel.48.2.281
http://www.aeaweb.org/articles.php?doi=10.1257/jel.48.2.281
http://dx.doi.org/10.1016/j.jeconom.2007.05.001
http://dx.doi.org/10.1016/j.jeconom.2007.05.001
http://dx.doi.org/10.1016/j.jeconom.2007.05.003
http://dx.doi.org/10.1016/j.jeconom.2007.05.003
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Version 0.4.0

Package ‘rddtools’

August 29, 2016

Title Toolbox for Regression Discontinuity Design ('RDD')

Description Set of functions for Regression Discontinuity Design ('RDD'), for
data visualisation, estimation and testing.

Maintainer Bastiaan Quast <bquast@gmail.com>

Imports KernSmooth, ggplot2, rdd, sandwich, Imtest, Formula, locpol,

methods
Depends AER, np

Suggests stats4, car,
License GPL (>=2)

knitr, testthat

URL https://github.com/bquast/RDDtools

BugReports https:

//github.com/bquast/RDDtools/issues

VignetteBuilder knitr

NeedsCompilation no

Author Matthieu Stigler [aut],
Bastiaan Quast [aut, cre]

Repository CRAN

Date/Publication 2015-07-27 13:32:08

R topics documented:

as.npregbw

clusterInf

covarTest_dis . . . . . . . .. e e
covarTest_mean . . . . . . . . . . .. e e e

dens_test


https://github.com/bquast/RDDtools
https://github.com/bquast/RDDtools/issues
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DC Sr1gvs
Example from Package ‘rdd’

Maintainer Drew Dimmery <drewd@nyu.edu> Title Regression Discontinuity Estimation
Description This package provides the tools to undertake estimation in Regression Discontinuity
Designs. Both sharp and fuzzy designs are supported. Estimation is accomplished using local linear
R version 3.0.1 (2013-05-16) -- "Good Sport"
> install.packages("rdd") C{
> library(rdd) g Sfﬁll &46? IOCL

## Artificial data example from p.9 rdd manual
> x<-runif(1000,-1,1) 6@'((1’46“ vav'
> cov<-rnorm(1000) # extra auxiliary variable
> y<-3+2*x+3*cov+10* (x>=0)+rnorm(1000) o)corm W'/’COM&
# example builds in a treatment effect of 10 points for those selected on x (x>0)
# story? students with high (or higher) ability selected for enrIched instruction

# run the rdd function just using X
> RDestimate(y~x)
Call: RDestimate(formula = y ~ x)

Coefficients:
local ATE LaTE Half-BW Double-BW
9.821 9.599 10.005

> summary(RDestimate(y~x))
Call: RDestimate(formula = y ~ Xx)

Type: sharp
Estimates:
Bandwidth Observations Estimate Std. Error =z value Pr(>|z|)
LATE 0.7613 721 9.821 0.5264 18.65 1.157e-77 *%*
Half-BW 0.3807 348 9.599 0.7705 12.46 1.258e-35 **%
Double-BW 1.5227 1000 10.005, 0.4134 24.20 2.001e-129 *x*
F-statistics: 2 l.’)lot RD
F Num. DoF Denom. DoF p 0\03 ce
LATE 785.6 3 717 0 7
Half-BW 341.9 3 344 0
Double-BW 1260.4 3 996 0 R N S
> plot(RDestimate(y~x)) B T s R c. cet '1.=_',:
- & & e
#compare with our simple anc roach <-:;> e ) . e T e

> rubin = lm(y ~ (x>0) + x)
> summary (rubin)
Call: Ilm(formula =y ~ (x > 0) + Xx)
Coefficients:
Estimate Std. Error t value Pr(>|t])

(Intercept) 3.1168 0.2227 13.998 < 2e-16 *** D e i w T e
X > OTRUE 10.0795 0.4038 24.960 < 2e-16 **x | .* UL T e LLomtt
> 1.9951 0.3371 5.919 4.45e-09 **x* N e £ Es
Residual standard error: 3.046 on 997 degrees of freedo
Multiple R-squared: 0.8017, Adjusted R-squared: 0.

L F-statistic: 2015 on 2 and 997 DF, p-value: < 2.2e-16

Use éxdva info (w =coV)
> summary (RDestimate(y~x| cov)) Se R
Call: RDestimate(formula = y ~ x | cov) Type: sharp e f T I I
Estimates: -1.0 -0.5 0.0 0.5 X

Bandwidth Observations Estimate Std. Error =z value Pr(>|z|)
LATE 0.7613 721 2;224 0.1831 54.36 0.000e+00 *x*=*
Half-BW 0.3807 348 10.005 0.2837 35..27 1.621e-272 **x
Double-BW 1.5227 1000 9.989 0.1389 71.94 0.000e+00 **=*
> rubincov = lm(y ~ (x>0) + x +cov) Note: assignment var x and auxilliary info
> summary (rubincov)
Call: Im(formula = y - (x > 0) + x + cov) cov generated uncorrelated above.
Coefficients: Otherwise including cov very risky
Estimate Std. Error t value Pr(>|t])

(Intercept) 3.04203 0.07480 40.67 <2e-16 *** UNWISE
X > O0TRUE 9.99862 0.13567 73.70 <2e-16 **x*
X 1.99487 0.11323 17.62 <2e-16 **x

cov 2.97875 0.03365 88.53 <2e-16 ***
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Example from Package ‘rdd’
Maintainer Drew Dimmery <drewd@nyu.edu> Title Regression Discontinuity Estimation
Description This package provides the tools to undertake estimation in Regression Discontinuity
Designs. Both sharp and fuzzy designs are supported. Estimation is accomplished using local linear
R version 3.0.1 (2013-05-16) -- "Good Sport"
> install.packages("rdd")
> library(rdd)

## Artificial data example from p.9 rdd manual

x<-runif(1000,-1,1)
cov<-rnorm(1000) # extra auxiliary variable
y<-3+2*x+3*cov+10* (x>=0)+rnorm(1000)
example builds in a treatment effect of 10 points for those selected on x (x>0)
story? students with high (or higher) ability selected for enriched instruction

#HH#= V V V

# run the rdd function just using X
> RDestimate(y~x)
Call: RDestimate(formula = y ~ Xx)

Coefficients:
LATE Half-BW Double-BW
9.821 9.599 10.005

> summary (RDestimate(y~x))
Call: RDestimate(formula =y ~ x)
Type: sharp

Estimates:

Bandwidth Observations Estimate Std. Error =z value Pr(>|z|)
LATE 0.7613 721 9.821 0.5264 18.65 1.157e-77 **x*
Half-BW 0.3807 348 9.599 0.7705 12.46 1.258e-35 *x*
Double-BW 1.5227 1000 10.005 0.4134 24.20 2.001e-129 **x*

F-statistics:

F Num. DoF Denom. DOF p
LATE 785.6 3 717 0
Half-BW 341.9 3 344 0
Double-BW 1260.4 3 996 0
> plot(RDestimate(y~x))
#compare with our simple ancova approach
> rubin = Im(y ~ (x>0) + X)
> summary (rubin)
Call: Im(formula =y ~ (x > 0) + x)
Coefficients:
Estimate Std. Error t value Pr(>|t])
(Intercept) 3.1168 0.2227 13.998 < 2e-16 ***
x > O0TRUE 10.0795 0.4038 24.960 < 2e-16 *x*
X 1.9951 0.3371 5.919 4.45e-09 **x*
Residual standard error: 3.046 on 997 degrees of freedom
Multiple R-squared: 0.8017, Adjusted R-squared: 0.8013
F-statistic: 2015 on 2 and 997 DF, p-value: < 2.2e-16

> summary (RDestimate(y~x| cov))
Call: RDestimate(formula =y ~ x | cov) Type: sharp

Estimates:
Bandwidth Observations Estimate Std. Error z value Pr(>|z])
LATE 0.7613 721 9.954 0.1831 54.36 0.000e+00 **=*
Half-BW 0.3807 348 10.005 0.2837 35.27 1.621e-272 ***
Double-BW 1.5227 1000 9.989 0.1389 71.94 0.000e+00 **=*
==

> rubincov = lm(y ~ (x>0) + x +cov)
> summary (rubincov)

Call: Im(formula =y ~ (x > 0) + x + cov)
Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 3.04203 0.07480 40.67 <2e-16 *x*
X > 0TRUE 9.99862 0.13567 73.70 <2e-16 ***

X 1.99487 0.11323 17.62 <2e-16 ***
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Package ‘rdrobust’

May 8, 2016

Type Package

Title Robust Data-Driven Statistical Inference in
Regression-Discontinuity Designs

Version 0.90
Date 2016-05-01

Author Sebastian Calonico <scalonico@bus.miami.edu>, Matias D. Catta-
neo <cattaneo@umich.edu>, Max H. Farrell, <max. farrell@chicagobooth.edu>, Ro-
cio Titiunik <titiunik@umich.edu>

Maintainer Sebastian Calonico <scalonico@bus.miami.edu>

Description Regression-discontinuity (RD) designs are quasi-experimental research designs popu-
lar in social, behavioral and natural sciences. The RD design is usually em-
ployed to study the (local) causal effect of a treatment, intervention or policy. This package pro-
vides tools for data-driven graphical and analytical statistical inference in RD
designs: rdrobust to construct local-polynomial point estimators and robust confidence inter-
vals for average treatment effects at the cutoff in Sharp, Fuzzy and Kink RD settings, rdbwse-
lect to perform bandwidth selection for the different procedures implemented, and rdplot to con-
duct exploratory data analysis (RD plots).

Depends R (>=3.1.1)

License GPL-2

NeedsCompilation no

Repository CRAN

Date/Publication 2016-05-08 09:52:01

R topics documented:

rdrobust-package . . . . . ... L e 2
rdbwselect . . . . . L e e e 2
rdbwselect_ 2014 . . . . . L e 6
rdplot . . . L e 8
rdrobust . . . .. L e e e e e 11
rdrobust-internal . . . . . ... L L 15
rdrobust_RDsenate . . . . . . .. e 15
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rdrobust 11

Cattaneo, M. D., B. Frandsen, and R. Titiunik. 2015. Randomization Inference in the Regres-
sion Discontinuity Design: An Application to the Study of Party Advantages in the U.S. Senate.
Journal of Causal Inference 3(1): 1-24. http://www-personal.umich.edu/~cattaneo/papers/
Cattaneo-Frandsen-Titiunik_2015_JCI.pdf.

See Also

rdbwselect, rdrobust

Examples

x<-runif(1000,-1,1)
y<=-5+3*x+2*(x>=0)+rnorm(1000)
rdplot(y,x)

rdrobust Local-Polynomial RD Estimation with Robust Confidence Intervals

Description

rdrobust implements local polynomial Regression Discontinuity (RD) point estimators with ro-
bust bias-corrected confidence intervals and inference procedures developed in Calonico, Cattaneo
and Titiunik (2014a), Calonico, Cattaneo and Farrell (2016a), and Calonico, Cattaneo, Farrell and
Titiunik (2016). It also computes alternative estimation and inference procedures available in the
literature.

Companion commands are: rdbwselect for data-driven bandwidth selection, and rdplot for data-
driven RD plots (see Calonico, Cattaneo and Titiunik (2015a) for details).

A detailed introduction to this command is given in Calonico, Cattaneo and Titiunik (2015b), and
Calonico, Cattaneo, Farrell and Titiunik (2016b). A companion Stata package is described in
Calonico, Cattaneo and Titiunik (2014b).

For more details, and related Stata and R packages useful for analysis of RD designs, visit https:
//sites.google.com/site/rdpackages/

Usage

rdrobust(y, x, covs = NULL, fuzzy = NULL, cluster = NULL,
c=0, p=1, g=2, deriv = 0,
h = NULL, b = NULL, rho = NULL, scalepar =1,
kernel = "tri", bwselect = "mserd”, scaleregul = 1, sharpbw = FALSE,
vce = "nn”, nnmatch = 3, level = 95, all = FALSE, subset = NULL)

Arguments
y is the dependent variable.
X is the running variable (a.k.a. score or forcing variable).

covs specifies additional covariates to be used for estimation and inference.


http://www-personal.umich.edu/~cattaneo/papers/Cattaneo-Frandsen-Titiunik_2015_JCI.pdf
http://www-personal.umich.edu/~cattaneo/papers/Cattaneo-Frandsen-Titiunik_2015_JCI.pdf
https://sites.google.com/site/rdpackages/
https://sites.google.com/site/rdpackages/
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1.3 Maimonides’ Rule 7

1.2.6 Exiting a treatment group after treatment assignment

Randomized experiment: ~ Once assigned to a treatment group, subjects do not
exit. A subject who does not comply with the assigned treatment, or switches
to another treatment, or is lost to follow-up, remains in the assigned treatment
group with these characteristics noted. An analysis that compares the groups as
randomly assigned, ignoring deviations between intended and actual treatment,
is called an ‘intention-to-treat’ analysis, and it is one of the central analyses
reported in a randomized trial. Randomization inference may partially address
noncompliance with assigned treatment by viewing treatment assignment as an
instrumental variable for treatment received; see §5.3 and [18].

Better observational study: ~ Once assigned to a treatment group, subjects do not
exit. A subject who does not comply with the assigned treatment, or switches to
another treatment, or is lost to follow-up, remains in the assigned treatment group
with these characteristics noted. Inference may partially address noncompliance
by viewing treatment assignment as an instrumental variable for treatment re-
ceived; see §5.3 and [22].

Poorer observational study:  There is no clear distinction between assignment to
treatment, acceptance of treatment, receipt of treatment, or switching treatments,
so problems that arise in experiments seem to be avoided, when in fact they are
simply ignored.

1.2.7 Study protocol

Randomized experiment: ~ Before beginning the actual experiment, a written pro-
tocol describes the design, exclusion criteria, primary and secondary outcomes,
and proposed analyses.

Better observational study:  Before examining outcomes that will form the basis
for the study’s conclusions, a written protocol describes the design, exclusion
criteria, primary and secondary outcomes, and proposed analyses; see Chapter
19.

Poorer observational study:  If sufficiently many analyses are performed, some-
thing publishable will turn up sooner or later.

1.3 Maimonides’ Rule

In 1999, Joshua Angrist and Victor Lavy [3] published an unusual and much ad-
mired study of the effects of class size on academic achievement. They wrote [3,
pages 533-535]:

[Clausal effects of class size on pupil achievement have proved very difficult to measure.
Even though the level of educational inputs differs substantially both between and within
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8 1 Dilemmas and Craftsmanship

schools, these differences are often associated with factors such as remedial training or
students’ socioeconomic background ... The great twelfth century Rabbinic scholar, Mai-
monides, interprets the Talmud’s discussion of class size as follows: ‘Twenty-five children
may be put in charge of one teacher. If the number in the class exceeds twenty-five but is
not more than forty, he should have an assistant to help with instruction. If there are more
than forty, two teachers must be appointed.” ... The importance of Maimonides’ rule for
our purposes is that, since 1969, it has been used to determine the division of enrollment
cohorts into classes in Israeli public schools.

In most places at most times, class size has been determined by the affluence or
poverty of a community, its enthusiasm or skepticism about the value of educa-
tion, the special needs of students for remedial or advanced instruction, the obscure,
transitory, barely intelligible obsessions of bureaucracies, and each of these deter-
minants of class size clouds its actual effect on academic performance. However,
if adherence to Maimonides’ rule were perfectly rigid, then what would separate a
school with a single class of size 40 from the same school with two classes whose
average size is 20.5 is the enrollment of a single student.

Maimonides’ rule has the largest impact on a school with about 40 students in
a grade cohort. With cohorts of size 40, 80, and 120 students, the steps down in
average class size required by Maimonides’ rule when an additional student enrolls
are, respectively, from 40 to 20.5, from 40 to 27, and from 40 to 30.25. For this
reason, we will look at schools with fifth grade cohorts in 1991 with between 31
and 50 students, where average class sizes might be cut in half by Maimonides’
rule. There were 211 such schools, with 86 of these schools having between 31 and
40 students in fifth grade, and 125 schools having between 41 and 50 students in the
fifth grade.

Adherence to Maimonides’ rule is not perfectly rigid. In particular, Angrist and
Lavy [3, page 538] note that the percentage of disadvantaged students in a school
“is used by the Ministry of Education to allocate supplementary hours of instruction
and other school resources.” Among the 211 schools with between 31 and 50 stu-
dents in fifth grade, the percentage disadvantaged has a slightly negative Kendall’s
correlation of —0.10 with average class size, which differs significantly from zero
(P-value = 0.031), and it has more strongly negative correlations of —0.42 and
—0.55, respectively, with performance on verbal and mathematics test scores. For
this reason, 86 matched pairs of two schools were formed, matching to minimize to
total absolute difference in percentage disadvantaged. Figure 1.1 shows the paired
schools, 86 schools with 31 and 40 students in fifth grade, and 86 schools with be-
tween 41 and 50 students in the fifth grade. After matching, the upper left panel
in Figure 1.1 shows that the percentage of disadvantaged students was balanced;
indeed, the average absolute difference within a pair was less than 1%. The upper
right panel in Figure 1.1 shows Maimonides’ rule at work: with some exceptions,
the slightly larger schools had substantially smaller class sizes. The bottom panels
of Figure 1.1 show the average mathematics and verbal test performance of these
fifth graders, with somewhat higher scores in the schools with between 41 and 50
fifth graders, where class sizes tended to be smaller.
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The paper by Angrist and Lavy (1999) on 'Maimonides rule' pushed
economists interest/revival (originally Don Campbell in psychology) of
regression discontinuity designs. The goal is to estimate the 'causal'
effect of class size on reading achievement of elementary school
children in Israel. Maimonides rule is from the talmud and says class
sizes above 40 must be broken into 2 smaller class. So a class of size
40 would be left intact, but a class of size 41 would be divided into
two classes: sizes 20 and 21. So assignment into a class size
reduction mechanism is a function of original class size, with cutoff
at 40. [note in the real life data there are discrepancies and deviations
from the rule, but that didn't phase the economists much, and for our
purposes we will treat these data as following the design intent].

I obtained the Angrist dataset from the UCLA repository for the

"Methods Matter" book: http://www.ats.ucla.edu/stat/examples/methods matter/
(but beware most of the links are broken, but with some modifications I
could get the data). I formed a dataset named 'ang2' which contained

classes of original size 36 through 45 (classes above size 40 are broken up).
Dataset ang2 contains 180 classrooms (rows).

The 'read' variable is the class mean reading score (analysis is done at

the classroom level).

I formed the variable 'treat' in ang2 by

> ang2$treat = ang2S$size > 40

Analysis

> attach‘angZ)
> angreg = lm(read ~ treat + size)

> summary(angreg)

Call: 1m(formula = read ~ treat + size)

Coefficients:
Estimate Std. Error t value Pr(>|t])

(Intercept) 61.6978 16.6373  3.708 0.000279 ***
treatTRUE 3.8472 2.8112 1.368 0.172894
size 0.1707 0.4360 0.391 0.695923

Residual standard error: 9.674 on 177 degrees of freedom
Multiple R-squared: 0.04579, Adjusted R-squared: 0.03
F-statistic: 4.246 on 2 and 177 DF, p-value: 0.0158

> library(rdd)

> summary (RDestimate(read ~ size, cutpoint = 40, data = ang2))

Call: RDestimate(formula = read ~ size, data = ang2, cutpoint = 40)
Type: sharp

Estimates:

Bandwidth Observations Estimate Std. Error z value Pr(>|z|)
LATE 3.175 115 1.0893 7.105 0.1533 0.8782
Half-BW 1.587 47 -0.9415 4.532 -0.2078 0.8354
Double-BW 6.350 180 1.0718 4.926 0.2176 0.8278

> plot(RDestimate(read ~ size, cutpoint = 40, data = ang2)) #plot attached
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