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3.4 Sensitivity Analysis: People Who Look Comparable May
Differ

What is sensitivity analysis?

If the naı̈ve model (3.5)–(3.8) were true, the distribution of treatment assignments

Z in a randomized paired experiment could be reconstructed by matching for the

observed covariate, x. It is common for a critic to argue that, in a particular study,

the naı̈ve model may be false. Indeed, it may be false. Typically, the critic accepts

that the investigators matched for the observed covariates, x, so treated and control

subjects are seen to be comparable in terms of x, but the critic points out that the

investigators did not measure a specific covariate u, did not match for u, and so are

in no position to assert that treated and control groups are comparable in terms of

u. This criticism could be dismissed in a randomized experiment — randomization

does tend to balance unobserved covariates — but the criticism cannot be dismissed

in an observational study. This difference in the unobserved covariate u, the critic

continues, is the real reason outcomes differ in the treated and control groups: it is

not an effect caused by the treatment, but rather a failure on the part of the inves-

tigators to measure and control imbalances in u. Although not strictly necessary,

the critic is usually aided by an air of superiority: “This would never happen in my

laboratory.”

It is important to recognize at the outset that our critic may be, but need not be,

on the side of the angels. The tobacco industry and its (sometimes distinguished)

consultants criticized, in precisely this way, observational studies linking smoking

with lung cancer [103]. In this instance, the criticism was wrong. Investigators and

their critics stand on level ground [8].

It is difficult if not impossible to give form to arguments of this sort until one

has a way of speaking about the degree to which the naı̈ve model is false. In an

observational study, one could never assert with warranted conviction that the naı̈ve

model is precisely true. Trivially small deviations from the naı̈ve model will have a

trivially small impact on the study’s conclusions. Sufficiently large deviations from

the naı̈ve model will overturn the results of any study. Because these two facts are

always true, they quickly exhaust their usefulness. Therefore, the magnitude of the

deviation is all-important. The sensitivity of an observational study to bias from an

unmeasured covariate u is the magnitude of the departure from the naı̈ve model that

would need to be present to materially alter the study’s conclusions.11

The first sensitivity analysis in an observational study concerned smoking and

lung cancer. In 1959, Jerry Cornfield and his colleagues [15] asked about the mag-

nitude of the bias from an unobserved covariate u needed to alter the conclusion

11 In general, a sensitivity analysis asks how the conclusion of an argument dependent upon as-
sumptions would change if the assumptions were relaxed. The term is sometimes misused to refer
to performing several parallel statistical analyses without regard to the assumptions upon which
they depend. If several statistical analyses all depend upon the same assumption — for instance,
the naı̈ve model (3.5) — then performing several such analyses provides no insight into conse-
quences of the failure of that assumption.
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3.4 Sensitivity Analysis: People Who Look Comparable May Differ 77

from observational studies that heavy smoking causes lung cancer. They concluded

that the magnitude of the bias would need to be enormous.

The sensitivity analysis model: Quantitative deviation from random
assignment

The naı̈ve model (3.5)–(3.8) said that two people, k and �, with the same observed

covariates, xk = x�, have the same probability of treatment given (rT , rC, x, u), i.e.,

πk = π�, where πk = Pr(Zk = 1 | rT k, rCk, xk, uk) and π� = Pr(Z� = 1 | rT �, rC�, x�, u�).
The sensitivity analysis model speaks about the same probabilities in (3.1), saying

that the naı̈ve model (3.5)–(3.8) may be false, but to an extent controlled by a pa-

rameter, Γ ≥ 1. Specifically, it says that two people, k and �, with the same observed

covariates, xk = x�, have odds12 of treatment, πk/(1−πk) and π�/(1−π�), that dif-

fer by at most a multiplier of Γ ; that is, in (3.1),

1

Γ
≤ πk/(1−πk)

π�/(1−π�)
≤ Γ whenever xk = x� . (3.13)

If Γ = 1 in (3.13), then πk = π�, so (3.5)–(3.8) is true; that is, Γ = 1 corresponds

with the naı̈ve model. In §3.1, expression (3.1) was seen to be a representation

and not a model — something that is always true for suitably defined u� — but

that representation took π� = 0 or π� = 1, which implies Γ = ∞ in (3.13). In other

words, numeric values of Γ between Γ = 1 and Γ = ∞ define a spectrum that begins

with the naı̈ve model (3.5)–(3.8) and ends with something that is hollow in the

sense that it is always true, namely (3.1). The hollow statement that is always true,

namely (3.1), is the statement that ‘association does not imply causation,’ that is,

a sufficiently large departure from the naı̈ve model can explain away as noncausal

any observed association.

If Γ = 2, and if you, k , and I, �, look the same, in the sense that we have the

same observed covariates, xk = x�, then you might be twice as likely as I to receive

the treatment because we differ in ways that have not been measured. For instance,

if your πk = 2/3 and my π� = 1/2, then your odds of treatment rather than control

are πk/(1−πk) = 2 or 2-to-1, whereas my odds of treatment rather than control

are π�/(1−π�) = 1 or 1-to-1, and you are twice as likely as I to receive treatment,

{πk/(1−πk)}/{π�/(1−π�)} = 2 in (3.13).13

12 Odds are an alternative way of expressing probabilities. Probabilities and odds carry the same
information in different forms. A probability of πk = 2/3 is an odds of πk/(1−πk) = 2 or 2-to-1.
Gamblers prefer odds to probabilities because odds express the chance of an event in terms of fair
betting odds, the price of a fair bet. It is easy to move from probability πk to odds ωk = πk/(1−πk)
and back again from odds ωk to probability πk = ωk/(1+ωk).
13 Implicitly, the critic is saying that the failure to measure u is the source of the problem, or that
(3.5) would be true with (x,u) in place of x, but is untrue with x alone. That is, the critic is saying
π� = Pr(Z� = 1 | rT �, rC�, x�, u�) = Pr(Z� = 1 | x�, u�). As in §3.1, because of the delicate nature
of unobserved variables, this is a manner of speaking rather than a tangible distinction. If the
formalities are understood to refer to π� = Pr(Z� = 1 | rT �, rC�, x�, u�), then it is not necessary to
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84 3 Two Simple Models for Observational Studies

Table 3.3 Sensitivity analysis for the one-sided 95% confidence interval for a constant, additive
treatment effect τ on DNA elution rates. As usual, the hypothesis of a constant effect H0 : τ = τ0

is tested by testing no effect on Yi − τ0 for the given value of Γ . The one-sided 95% confidence
interval is the set of values of τ0 not rejected in the one-sided, 0.05 level test. As Γ increases,
there is greater potential deviation from random treatment assignment in (3.13), and the confidence
interval grows longer. For instance, a treatment effect of τ0 = 0.30 would be implausible in a
randomized experiment, Γ = 1, but not in an observational study with Γ = 2.

Γ 1 2 3
95% Interval [0.37, ∞) [0.21, ∞) [0.094, ∞)

E
(

T
∣∣ F ,Z

)
=

1

1+Γ

I

∑
i=1

si qi, (3.26)

while the variance becomes

var
(

T
∣∣ F ,Z

)
= var

(
T

∣∣∣ F ,Z
)

=
Γ

(1+Γ )2

I

∑
i=1

(si qi)
2 . (3.27)

The remaining calculations are unchanged.

Sensitivity analysis for a confidence interval

Table 3.3 is the sensitivity analysis for the one-sided 95% confidence interval for an

additive, constant treatment effect discussed in §2.4.2. As in a randomized experi-

ment, the hypothesis that H0 : rTi j = rCi j +τ0 is tested by testing the null hypothesis

of no treatment effect on the adjusted responses, Ri j − τ0 Zi j, or equivalently on the

adjusted, treated-minus-control pair differences, Yi − τ0. The one-sided 95% con-

fidence interval is the set of values of τ0 not rejected by a one-sided, 0.05 level

test.

From Table 3.2, the hypothesis H0 : τ = τ0 for τ0 = 0 is barely rejected for Γ = 4

because the maximum possible one-sided P-value is 0.047. For Γ = 3, the max-

imum possible one-sided P-value is 0.04859 for τ0 = .0935 and is 0.05055 for

τ0 = .0936, so after rounding to two significant digits, the one-sided 95% confi-

dence interval is [0.094, ∞).

Sensitivity analysis for point estimates

For each value of Γ ≥ 1, a sensitivity analysis replaces a single point estimate,

say τ̂ , by an interval of point estimates, say [τ̂min, τ̂max] that are the minimum and

maximum point estimates for all distributions of treatment assignments satisfying

(3.16)–(3.18). Unlike a test or a confidence interval, and like a point estimate, this

interval [τ̂min, τ̂max] does not reflect sampling uncertainty; however, it does reflect

uncertainty introduced by departures from random treatment assignment in (3.13)

or (3.16)–(3.18).
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Two R Packages for Sensitivity Analysis
in Observational Studies

Paul R. Rosenbaum rosenbaum@wharton.upenn.edu

Department of Statistics

Wharton School

University of Pennsylvania

Philadelphia, PA 19104-6340 US

Abstract

Two R packages for sensitivity analysis in observational studies are described. Pack-
age sensitivitymw is for matched pairs with one treated subject and one control, or
matched sets with one treated subject and a fixed number, K ≥ 2, of controls. Package
sensitivitymv is for matched sets with variable numbers of controls. The packages offer
conventional statistics, such as the permutational t-test and M -statistics using Huber’s
weights, but they also offer less familiar test statistics that have higher power in sensi-
tivity analyses. The packages provide several tools useful in sensitivity analyses, such
as an aid, amplify, to the interpretation of the value of the sensitivity parameter, and a
device for combining evidence from several independent sensitivity analyses, truncatedP,
for instance, several evidence factors or several subgroups.

Keywords: M -test; observational study; permutational t-test; randomization inference;
sensitivity analysis.

1. Introduction

1.1 R Packages sensivitymv and sensitivitymw

The two R packages sensivitymv and sensitivitymw perform sensitivity analyses for obser-
vational studies with matched pairs or matched sets containing multiple controls. Package
sensitivitymw is for matched pairs or matching with a fixed number of controls, for in-
stance matching each treated subject to two controls. In contrast, package sensivitymv is
for matched sets with variable numbers of controls, perhaps some treatment-control pairs
together with some triples containing a treated subject and two controls. Also, the pack-
ages contain several data sets and several additional functions useful in sensitivity analysis.
The packages overlap considerably, but package sensitivitymw is faster with additional
features for matched pairs and for matching with a fixed number of controls. Both packages
are available at CRAN and contain documentation.

My purpose here is to present a gentle introduction to these R packages, with pointers
to articles for technical detail and pointers to the software documentation for additional
options.

c⃝2015 Paul R. Rosenbaum.
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1.2 Scope of the current discussion

In an observational study, a sensitivity analysis replaces qualitative claims about whether
unmeasured biases are present with an objective quantitative statement about the magni-
tude of bias that would need to be present to change the conclusions. In this sense, a
sensitivity analysis speaks to the assertion “it might be bias” in much the same way that
a P -value speaks to the assertion “it might be bad luck”. If someone asserted that the
higher responses in the treated group in a randomized experiment “might be bad luck,” an
unlucky randomization with no treatment effect, then a P -value does not deny the logical
possibility of bad luck, but objectively measures the quantity of bad luck that would need
to be present to alter the impression that the treatment did have an effect. In parallel, a
sensitivity analysis measures the magnitude of bias from nonrandom treatment assignment
that would need to be present to alter the conclusions of an observational study.

A sensitivity analysis is one tool useful in the large task of designing and interpreting an
observational study. The discussion here is rather narrowly focused on carrying out such
a sensitivity analysis in R.

1.3 What do the packages do?

In an observational study, treated and control subjects may be matched to be similar in
terms of observed or measured covariates, but people who look similar in terms of measured
covariates may still differ in terms of unmeasured covariates. The packages perform a sen-
sitivity analysis asking about the magnitude of bias from nonrandom treatment assignment
that would need to be present to alter the qualitative conclusions of a naive analysis that
presumes matching for observed covariates removes all bias.

In a matched randomized experiment, each subject in a matched set has the same chance
of being assigned to treatment or control because randomization has ensured that this is
so. Without randomization, two people who look similar may differ in their chances of
receiving treatment because they differ in terms of an unmeasured covariate not controlled
by matching for measured covariates. The sensitivity analysis assumes that one subject in a
matched set may be Γ ≥ 1 times more likely than another to receive treatment because they
differ in terms of unobserved covariates. If Γ = 1, then subjects who look the same are the
same: matched subjects have equal chances of treatment, as in a randomized experiment.
For Γ = 1, the sensitivity analysis reports a single answer, for instance a single P -value
testing the null hypothesis of no treatment effect, and that single answer is the P -value
that would be appropriate in a matched randomized experiment. For Γ > 1, there is no
longer a single P -value, but rather an interval of possible P -values. The sensitivity analysis
asks: How large must Γ be before the interval is so long that it is inconclusive, perhaps
both accepting and rejecting the null hypothesis of no effect at the 0.05 level? The interval
of possible P -values would be inconclusive in this sense if it extended from below 0.05 to
above 0.05. The senmw and senmv functions compute sensitivity bounds for P -values.
Specifically, they compute the upper bound on the P -value, for a specific Γ, so if that upper
bound is at most 0.05, then a bias of magnitude Γ is too small to lead to acceptance of the
null hypothesis. The senmwCI function inverts bounds on P -values to obtain sensitivity
bounds for confidence intervals and point estimates. For detailed discussion of this model,
see Rosenbaum (2002, §4; 2007).
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3.5 Welding Fumes and DNA Damage 79

for i = 1, . . . , I, whereas in (3.16)–(3.18) the treatment assignment probabilities may

vary from pair to pair, are unknown, but are bounded by 1/(1+Γ ) and Γ /(1+Γ ).
If Γ = 1.0001, then (3.14) would differ trivially from a randomized paired experi-

ment, but as Γ → ∞ the difference can become arbitrarily large.

Suppose that we had calculated a P-value or a point estimate or confidence inter-

val from a paired observational study matched for observed covariates x, by simply

applying conventional statistical methods, that is, the methods in Chapter 2 for a ran-

domized paired experiment. Those inferences would have their usual properties if

the naı̈ve model (3.5)–(3.8) were true, that is, if Γ = 1. How might those inferences

change if Γ were some specific number larger than 1, indicating some bias due to

failure to control for u? Using (3.16)–(3.18) and a few calculations, we can often

deduce the range of possible P-values or point estimates or confidence intervals for

a specified Γ . Consider, for instance, the P-value for testing the null hypothesis of

no treatment effect. If the naı̈ve model, Γ = 1, led to a P-value of, say, 0.001, and if

Γ = 2 yields a range of possible P-values from 0.0001 to 0.02, then a bias of mag-

nitude Γ = 2 creates greater uncertainty but does not alter the qualitative conclusion

that the null hypothesis of no effect is not plausible. If the critic is thinking in terms

of a moderately large deviation from a randomized trial, in which similar looking

people may differ by a factor of Γ = 2 in their odds of treatment, then the critic is

simply mistaken: the bias would have to be considerably larger than Γ = 2 to make

no treatment effect plausible.

Every study is sensitive to sufficiently large biases. There is always a value of

Γ such that, for that value and larger values of Γ , the interval of possible P-values

includes small values, perhaps 0.0001, and large values, perhaps 0.1. A sensitivity

analysis simply displays how the inference changes with Γ . For smoking and lung

cancer, the bias would have to be enormous, Γ = 6; see [85, Chapter 4]. The ques-

tion answered by a sensitivity analysis is: how large does Γ have to be before one

must concede that the critic’s criticism might be correct?

It is time to consider an example.

3.5 Welding Fumes and DNA Damage

Sensitivity analysis when testing the hypothesis of no treatment effect

The fumes produced by electric welding contain chromium and nickel and have

been judged genotoxic in laboratory tests [39]. Werfel and colleagues [111] looked

for evidence of DNA damage in humans by comparing 39 male welders to 39 male

controls matched for age and smoking habits. Table 3.1 displays the comparability

of the two groups with respect to the three covariates used in matching. Clearly,

Table 3.1 is a rather limited demonstration of comparability.

Werfel et al. [111] presented several measures of genetic damage, including the

measurement of DNA single strand breakage and DNA-protein cross-links using

elution rates through polycarbonate filters with proteinase K. Broken strands are

rag
Highlight

rag
Rectangle



80 3 Two Simple Models for Observational Studies

Table 3.1 Covariate balance in 39 matched welder-control pairs. Covariates are gender, smoking
and age.

Welders Controls

Male 100% 100%
Smokers 69% 69%

Age Mean 39 39
Minimum 23 23

Lower Quartile 34 32
Median 38 36

Upper Quartile 46 46
Maximum 56 59

expected to pass through filters more quickly, at a higher rate. Figure 3.1 depicts the

elution rates and their matched pair differences. The differences are mostly positive,

with higher elution rates for welders, and the differences are fairly symmetric about

their median, with longer tails than the Normal distribution.

Table 3.2 is the sensitivity analysis for the one-sided P-value using Wilcoxon’s

signed rank statistic to test the null hypothesis of no treatment effect against the

alternative that exposure to welding fumes caused an increase in DNA damage. The

first row, Γ = 1, is the usual randomization inference, which would be appropriate

if the 78 men had been paired for age and smoking and randomly assigned to their

careers as a welder or a nonwelder. In the first row, the range of possible P-values

is a single number, 3.1× 10−7, because there would be no uncertainty about the

distribution of treatment assignments, Z, in a randomized experiment. The naı̈ve

model (3.5)–(3.8) would also lead to Γ = 1 and the single P-value in the first row of

Table 3.2. If this had been a randomized experiment, there would have been strong

evidence against the null hypothesis of no effect. However, it was not a randomized

experiment. The P-value in the first row of Table 3.2 says that it is implausible that

the difference seen in Figure 3.1 is due to chance, the flip of a coin that assigned

one man to treatment, another to control. The P-value in the first row of Table

3.2 does not speak to the critic’s concern that the difference seen in Figure 3.1 is

neither due to chance nor due to an effect caused by welding, but reflects instead

some way that the matched welders and controls are not comparable. A small P-

value, here 3.1×10−7, computed assuming either randomization or equivalently the

naı̈ve model (3.5)–(3.8) does nothing to address the critic’s concern. It is, however,

possible to speak to that concern.

The second row permits a substantial departure from random treatment assign-

ment or (3.5)–(3.8). It says that two men of the same age and smoking status — the

same x — may not have the same chance of a career as a welder: one such man may

be twice as likely as another to choose a career as a welder, Γ = 2, because they dif-

fer in terms of a covariate u that was not measured. This introduces a new source of

uncertainty beyond chance. Using (3.16)–(3.18), we may determine every possible

P-value that could be produced when Γ = 2, and it turns out that the smallest pos-

sible P-value is 3.4×10−12 and the largest possible P-value is 0.00064. Although
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  #### Week 5, Sensitivity calculations, DOS Ch 3, Rosenbaum vignette

> install.packages("sensitivitymw")
> data(erpcp) # Welders DNA damage
> dim(erpcp) # # data are outcomes in wide form; each row is a subclass
[1] 39  2
> head(erpcp)
  welder control
1  0.899   0.751
2  1.233   0.875
3  1.733   0.161
4  3.156   0.630
5  1.749   1.462
6  0.431   0.702
> attach(erpcp)
> boxplot(welder,control)# matches DOS Fig 3.1

> t.test(erpcp$welder, erpcp$control)
Welch Two Sample t-test

data:  erpcp$welder and erpcp$control
t = 5.1442, df = 54.368, p-value = 3.785e-06
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 0.3502495 0.7974940
sample estimates:
mean of x mean of y 
1.3957436 0.8218718 

> wilcox.test(erpcp$welder, erpcp$control)
Wilcoxon rank sum test with continuity correction

data:  erpcp$welder and erpcp$control
W = 1251.5, p-value = 9.497e-07
alternative hypothesis: true location shift is not equal to 0
> wilcox.test(erpcp$welder - erpcp$control)

Wilcoxon signed rank test
data:  erpcp$welder - erpcp$control
V = 715, p-value = 6.247e-07
alternative hypothesis: true location is not equal to 0

#### p.4 Gamma and p-values
>  senmw(erpcp, gamma = 1, method = "t")$pval
[1] 2.048115e-05
>  senmw(erpcp, gamma = 2, method = "t")$pval
[1] 0.003737467
>  senmw(erpcp, gamma = 3, method = "t")$pval
[1] 0.02275942
>  senmw(erpcp, gamma = 4, method = "t")$pval
[1] 0.0579339
> # I think doubling 'p' is right

> #### now to senmwCI page 5
>  senmwCI(erpcp, gamma = 1, method = "t", one.sided = TRUE)
$PointEstimate
minimum maximum 
 0.5739  0.5739 
$Confidence.Interval
minimum maximum 
  0.394     Inf 

>  senmwCI(erpcp, gamma = 1, method = "t", one.sided = FALSE) # get two-sided CI
$PointEstimate
minimum maximum 
 0.5739  0.5739 
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Fig. 3.1 DNA elution rates through polycarbonate filters with proteinase K for 39 male welders
and 39 male controls matched for age and smoking. This assay is a measure of DNA single strand
breakage and DNA-protein cross-links. In the boxplot of differences, there is a line at zero. In the
Normal quantile plot, the line is fitted to the median and quartiles.

Table 3.2 Sensitivity analysis for the one-tailed P-value for testing the null hypothesis of no treat-
ment effect on DNA elution rates with proteinase K in 39 pairs of a male welder and a male control
matched for age and smoking. The table gives the lower (min) and upper (max) bounds on the one-
sided P-value for departures from random assignment of various magnitudes, Γ . For Γ = 1, the
two P-values are equal to each other and equal to the randomization P-value from Chapter 2. For
Γ > 1, there is a range [Pmin, Pmax] of possible P-values. This study is sensitive only to very large
biases, for instance Γ = 5, because at this point the range includes both small and large, significant
and insignificant, P-values.

Γ Pmin Pmax

1 3.1×10−7 3.1×10−7

2 3.4×10−12 0.00064

3 < 10−15 0.011

4 < 10−15 0.047

5 < 10−15 0.108
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Rosenbaum

In a randomized experiment, the permutational t-test is the randomization test that
uses as its test statistic either the total, T =

∑I
i=1 Yi, or the mean, (1/I)

∑I
i=1 Yi, where

these two statistics give the same permutational P -value. The permutation distribution
of the mean, or the permutational t-test, is of historical and conceptual importance, in
part because, in a randomized experiment, the expectation of (1/I)

∑I
i=1 Yi is the average

treatment effect, {1/ (2I)}
∑I

i=1

∑2
j=1 (rTij − rCij).

2.2 Using the permutational t-test in matched pairs

Werfel et al. (1998) matched 39 welders exposed to chromium and nickel to 39 unexposed
controls, measuring DNA damage in lymphocytes by DNA elution rates through polycar-
bonate filters with proteinase K (or ERPC+). Pairs were matched for age and smoking
habits. The data frame erpcp in both packages has two columns, welder and control, and
it contains the ERPC+ values for 39 pairs or rows.

The following calculations obtain the upper bound on the one-sided P -value testing the
null hypothesis of no treatment effect using the permutational t-test (method=“t”). For
Γ = 1, this is the usual randomization P -value for the mean difference, namely 2.048×10−5.
For Γ = 3, the upper bound is 0.0228. For Γ = 4, the upper bound is 0.0579, so P -values
well below and slightly above the conventional 0.05 level are possible under H0 if the bias
could be as large as Γ = 4. In other words, rejection of H0 is sensitive to unmeasured
biases of magnitude Γ = 4.

> library(sensitivitymw)
> data(erpcp)
> senmw(erpcp, gamma = 1, method = “t”)$pval
[1] 2.048115e− 05

> senmw(erpcp, gamma = 3, method = “t”)$pval
[1] 0.02275942
> senmw(erpcp, gamma = 4, method = “t”)$pval
[1] 0.0579339

Association does not imply causation, and that is always true, but logical implication
tells us less than sensitivity analysis of the data at hand. The sensitivity analysis says
that the observed association between welding and DNA elution rates is too strong to be
explained by a bias of Γ = 3, because the maximum possible P -value from a bias of Γ = 3 is
0.0228, so a bias of that magnitude would not make the null hypothesis of no effect plausible.
However, a bias of Γ = 4 would make the null hypothesis barely plausible, because with a
bias that large, the P -value could be as large as 0.0579 > 0.05. Saying that association does
not imply causation is essentially the same as saying that the upper bound on the P -value
tends to 1 as Γ → ∞.

The P -value bounds are one-sided. In a sensitivity analysis, it is safe though somewhat
conservative to obtain a two-sided P -value by doubling the smaller of two one-sided P -
values, reporting a two-sided bound of 0.02275942× 2 = 0.04551884 for Γ = 3. The reason
doubling the one-sided P -value is conservative in a sensitivity analysis is that the bias that
pushes the test statistic T into the upper tail is different from the bias that pushes it into

4
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  #### Week 5, Sensitivity calculations, DOS Ch 3, Rosenbaum vignette

> install.packages("sensitivitymw")
> data(erpcp) # Welders DNA damage
> dim(erpcp) # # data are outcomes in wide form; each row is a subclass
[1] 39  2
> head(erpcp)
  welder control
1  0.899   0.751
2  1.233   0.875
3  1.733   0.161
4  3.156   0.630
5  1.749   1.462
6  0.431   0.702
> attach(erpcp)
> boxplot(welder,control)# matches DOS Fig 3.1

> t.test(erpcp$welder, erpcp$control)
Welch Two Sample t-test

data:  erpcp$welder and erpcp$control
t = 5.1442, df = 54.368, p-value = 3.785e-06
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 0.3502495 0.7974940
sample estimates:
mean of x mean of y 
1.3957436 0.8218718 

> wilcox.test(erpcp$welder, erpcp$control)
Wilcoxon rank sum test with continuity correction

data:  erpcp$welder and erpcp$control
W = 1251.5, p-value = 9.497e-07
alternative hypothesis: true location shift is not equal to 0
> wilcox.test(erpcp$welder - erpcp$control)

Wilcoxon signed rank test
data:  erpcp$welder - erpcp$control
V = 715, p-value = 6.247e-07
alternative hypothesis: true location is not equal to 0

#### p.4 Gamma and p-values
>  senmw(erpcp, gamma = 1, method = "t")$pval
[1] 2.048115e-05
>  senmw(erpcp, gamma = 2, method = "t")$pval
[1] 0.003737467
>  senmw(erpcp, gamma = 3, method = "t")$pval
[1] 0.02275942
>  senmw(erpcp, gamma = 4, method = "t")$pval
[1] 0.0579339
> # I think doubling 'p' is right

> #### now to senmwCI page 5
>  senmwCI(erpcp, gamma = 1, method = "t", one.sided = TRUE)
$PointEstimate
minimum maximum 
 0.5739  0.5739 
$Confidence.Interval
minimum maximum 
  0.394     Inf 

>  senmwCI(erpcp, gamma = 1, method = "t", one.sided = FALSE) # get two-sided CI
$PointEstimate
minimum maximum 
 0.5739  0.5739 
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senmw 9

Arguments

y If y is an n by J matrix, then: (i) the rows are n matched sets, (ii) the first column
is the treated response in a set, columns 2 to J contain the responses of controls
in the same matched set. Every set must have J-1 controls, and NAs are not
allowed in y. If y is a vector, then y is the vector of treated-minus-control pair
differences in outcomes in n=length(y) matched pairs.

gamma gamma is the sensitivity parameter, gamma=1 for a randomization test, gamma>1
for sensitivity bounds. Use of gamma<1 will generate an error. This parameter
gamma is denoted by the upper case Greek letter gamma in the cited literature,
for instance Rosenbaum (2007, 2014).

method If method is NULL, then the method is determined by the parameters, namely
inner, trim, lambda, m1, m2, and m. If method is not NULL, then these parame-
ters are set according to the selected method and stated values of the parameters
are ignored. The default values of the parameters are equivalent to method="h".
(i) method = "h" (Huber, unweighted) is unweighted and sets inner=0, trim=3,
lambda = 1/2, m1=m2=m=1. Method "h" is equivalent to the default settings.
Its psi function levels off at 3 times the median (lambda = 1/2) of the absolute
pair differences. The unweighted method h is often a good choice in small
samples with few pairs or sets (say 20 sets). Unweighted method h is often a
reasonable choice when the number of controls in each matched set is 6 or more.
(Method "h" is almost the same as the default method for the senmv function
in the sensitivitymv package, except: (a) senmv permits variable numbers of
controls, (b) senmv uses trim = 2.5, not trim = 3.)
(ii) method = "w" (weighted). Method "w" sets inner=0, trim=3, lambda=1/2,
m1=12, m2=20, m=20. These weights are sturdy, all-purpose weights, often
better than method="h" with 2-4 controls per matched set. Method="s" will
often perform better for short-tailed Normal errors and method="l" will often
perform better for long-tailed errors such as the t with 4 degrees of freedom.
(iii) method = "f" (fixed choice weights). Method "f" sets inner=0, trim=3,
lambda=1/2, m1=14, m2=20, m=20. Similar to method="w", method="f" uses
all-purpose weights that were suggested, based on various calculations, in sec-
tion 7.2 of Rosenbaum (2014) as the choice of a person who wants a "fixed
choice" of weights.
(iv) method = "s" (weighted for short tails) has weights appropriate for short
tailed distributions, such as the Normal distribution. Method "s" sets inner=0,
trim=3, lambda=1/2, m1=16, m2=20, m=20.
(v) method = "l" (i.e., lower case letter L, weighted for long tails) has weights
appropriate for long tailed distributions, such as the t-distribution with 4 de-
grees of freedom. It sets inner=0, trim=3, lambda=1/2, m1=12, m2=19, m=20.
These weights redescend. The senmwCI function does not permit weights that
redescend, and in particular does not permit method = "l".
(vi) method = "q" (Quade) ranks sets using ordinary ranks (1, 2, ..., n) applied to
ranges of M-scores within sets, in parallel with Quade (1979) and Tardiff (1987).
It sets inner=0, trim=3, lambda=1/2, m1=2, m2=2, m=2.
(vii) method = "t" (permutational t-test) is unweighted and permutes the ob-
servations themselves without ranking or scoring. It sets inner=0, trim=Inf,
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Sensitivity Analysis

the lower tail; see the related discussion of use of the Bonferroni inequality in sensitivity
analyses in Rosenbaum and Silber (2009a, §4.5).

The function senmwCI computes point estimates and confidence intervals for an additive
effect τ . For Γ = 1, there is a single point estimate, which for method= “t” is the mean
difference, mean(erpcp$welder-erpcp$control) = 0.5739. The default is a one-sided
0.05-level confidence interval. (The level is controlled by alpha and one-or-two sided is
controlled by one.sided.)

> senmwCI(erpcp, gamma = 1, method = “t”, one.sided = TRUE)
$PointEstimate
minimum maximum

0.5739 0.5739

$Confidence.Interval
minimum maximum

0.394 Inf

For Γ = 2, there is no longer a single point estimate, 0.5739, but rather an interval of
point estimates, [0.4167, 0.7487] and a longer 95% confidence interval, τ ≥ 0.2081. Notably,
with a bias of at most Γ = 2, the smallest possible point estimate of τ , namely 0.4167, is
still fairly large.

> senmwCI(erpcp, gamma = 2, method = “t”, one.sided = TRUE)
$PointEstimate
minimum maximum

0.4167 0.7487

$Confidence.Interval
minimum maximum

0.2081 Inf

In a sensitivity analysis, it is safe but somewhat conservative to form a 95% two-sided
confidence interval as the intersection of two one-sided 97.5% confidence intervals, for the
same reason that two-sided P -values are safe but somewhat conservative; see Rosenbaum
(1995, §2.1) for some details.

2.3 M-statistics for matched pairs

An M -statistic gives each Yi a controlled degree of influence. Let s be the median of
the |Yi| = |Ri1 −Ri2|, as in Maritz (1979). For matched pairs, the M -statistic is T =∑I

i=1 ψ (Yi/s) where ψ (·) is a suitable function. Taking ψ (y) = y yields the same P -values
as the permutational t-test. Huber (1981) proposed a ψ (·) that tops out at a constant h > 0
and bottoms out at −h, specifically ψ (y) = max {−h, min (y, h)} = sign (y) · min (|y| , h),
thereby limiting to ±hs the influence one observation Yi can have on the statistic T .

With the default settings (or method= “h”) in the erpcp data, the upper bounds on
P -values using Huber’s weights are similar to those from the permutational t-test in §2.2,

5
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  #### Week 6, Sensitivity calculations, DOS Ch 3, Rosenbaum vignette

> install.packages("sensitivitymw")
> data(erpcp) # Welders DNA damage
> dim(erpcp) # # data are outcomes in wide form; each row is a subclass
[1] 39  2
> head(erpcp)
  welder control
1  0.899   0.751
2  1.233   0.875
3  1.733   0.161
4  3.156   0.630
5  1.749   1.462
6  0.431   0.702
> attach(erpcp)
> boxplot(welder,control)# matches DOS Fig 3.1

> t.test(erpcp$welder, erpcp$control)
        Welch Two Sample t-test
data:  erpcp$welder and erpcp$control
t = 5.1442, df = 54.368, p-value = 3.785e-06
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 0.3502495 0.7974940
sample estimates:
mean of x mean of y 
1.3957436 0.8218718 

> wilcox.test(erpcp$welder, erpcp$control)
        Wilcoxon rank sum test with continuity correction
data:  erpcp$welder and erpcp$control
W = 1251.5, p-value = 9.497e-07
alternative hypothesis: true location shift is not equal to 0
> wilcox.test(erpcp$welder - erpcp$control)
        Wilcoxon signed rank test
data:  erpcp$welder - erpcp$control
V = 715, p-value = 6.247e-07
alternative hypothesis: true location is not equal to 0

#### p.4 Gamma and p-values
>  senmw(erpcp, gamma = 1, method = "t")$pval
[1] 2.048115e-05
>  senmw(erpcp, gamma = 2, method = "t")$pval
[1] 0.003737467
>  senmw(erpcp, gamma = 3, method = "t")$pval
[1] 0.02275942
>  senmw(erpcp, gamma = 4, method = "t")$pval
[1] 0.0579339
> # I think doubling 'p' is right

> #### now to senmwCI page 5
>  senmwCI(erpcp, gamma = 1, method = "t", one.sided = TRUE)
$PointEstimate
minimum maximum 
 0.5739  0.5739 
$Confidence.Interval
minimum maximum 
  0.394     Inf 

>  senmwCI(erpcp, gamma = 1, method = "t", one.sided = FALSE) # get two-sided CI
$PointEstimate
minimum maximum 
 0.5739  0.5739 
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$Confidence.Interval
minimum maximum 
 0.3561  0.7916 

>  senmwCI(erpcp, gamma = 2, method = "t", one.sided = TRUE)
$PointEstimate
minimum maximum 
 0.4167  0.7487 
$Confidence.Interval
minimum maximum 
 0.2081     Inf 

>  senmwCI(erpcp, gamma = 2, method = "t", one.sided = FALSE)
$PointEstimate
minimum maximum 
 0.4167  0.7487 
$Confidence.Interval
minimum maximum 
 0.1552  1.0414 

### now try the "amplify stuff" (2009 JASA paper)
> install.packages("sensitivitymv")
##### page 6  sec 2.4
### Gamma = f(Lamda [bias in assignment], Delta [bias in outcome])
### amplify takes arguments Gamma, Lamda(values >Gamma)  produces Delta
> amplify(3,c(4:7))

4 5 6 7 
11.000000  7.000000  5.666667  5.000000 
## discussion p.7

> ## mercury in RQ

#### matches two-sided t.test interval
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14 senmwCI

lambda Observations are scaled by the lambda quantile of the absolute pair differences.
See the help file for senmw for more information.

m1 One of three parameters that determine the weights. See the discussion of m
below.

m2 One of three parameters that determine the weights. See the discussion of m
below.

m One of three parameters that determine the weights. See the help file for senmw
for more information. m2<m is not available for confidence intervals.

alpha 1-alpha is the coverage of the confidence interval.

one.sided If TRUE, the confidence interval is one sided. If FALSE, the confidence interval
is two-sided. The default is one-sided.

tol The senmwCI function calls the R function uniroot, and tol is the tol (or toler-
ance) parameter in that call. If tol=NULL, senmwCI picks a reasonable toler-
ance.

interval The senmwCI function calls the R function uniroot, and interval is the interval
parameter in that call. If interval=NULL, senmwCI picks a reasonable interval.

detail If detail=FALSE, the interval of point estimates and the confidence interval are
reported after rounding based on tol. If detail=TRUE, then the results are not
rounded, the tol and interval are reported.

Value

PointEstimate An interval of point estimates allowing for a bias of gamma in treatment assign-
ment. Rounded if detail=FALSE.

CI An confidence interval allowing for a bias of gamma in treatment assignment.
Rounded if detail=FALSE.

search.interval

If detail=TRUE, the interval of parameter values searched to find the estimates
and confidence intervals.

tolerance If detail=TRUE, the tolerance used in solving for estimates and confidence in-
tervals.

Note

senmwCI inverts a test to obtain confidence intervals and point estimats; so, it calls senmw many
times, solving several equations, and senmwCI is much slower than a single call to senmw. sen-
mwCI finds point estimates and confidence intervals by searching for a value of the parameter tau in
"interval" determining the solution tau.hat to an estimating equation with an error of "tol" in solving
the equation. If interval=NULL and tol=NULL, senmwCI tries to pick a reasonable finite interval
and tol>0. If concerned about these "reasonable values", set detail=TRUE, make the interval longer,
the tol smaller, and wait longer for program to run. As illustrated in the examples, if there is reason
for concern, the solutions produced by senmwCI can be checked by running senmw with tau set to
the endpoints of the various intervals.

Unlike senmw, senmwCI does not permit redescending rank scores, m2<m or method="l".

rag
Highlight

rag
Rectangle



Rosenbaum

but this will vary from one data set to another. In parallel, senmwCI may be used to obtain
a sensitivity analysis for point estimates and confidence intervals.

> senmw(erpcp, gamma = 1, method = “h”)$pval
[1] 6.402131e− 06

> senmw(erpcp, gamma = 2, method = “h”)$pval
[1] 0.002410713
> senmw(erpcp, gamma = 3, method = “h”)$pval
[1] 0.01859188
> senmw(erpcp, gamma = 4, method = “h”)$pval
[1] 0.05304687

(Some comments about default settings follow. By default, senmv, senmw and senmwCI

use the median of |Yi| to define s, but the user can select a different quantile by changing the
value of lambda, the default being lambda = 1/2 for the median. By default, h = 2.5 in
senmv and h = 3 in senmw and senmwCI, but the user can select different values by changing
the value of trim. If the Yi are discrete and most Yi equal zero, the median |Yi| is not
useful for scaling, and it may be reasonable to take lambda = .90 and h = trim = 1, which
resembles a trimmed mean.)

2.4 Amplification: an aid to interpreting Γ

When computing or reporting a sensitivity analysis, it is often convenient to have an analysis
indexed by a single parameter, Γ. As discussed in §1.3, the sensitivity analysis reports the
range of possible inferences when an unobserved bias alters the odds of treatment by a factor
of at most Γ. The extremes of that range are produced by a bias strongly related to the
outcome. An amplification interprets the single parameter Γ in terms of two parameters,
one Λ controlling the relationship between the unobserved bias and treatment assignment
Zij , the other ∆ controlling the relationship between the unobserved bias and the outcome
Yi. Here, Λ is the maximum impact of the bias on the odds of treatment, Zi1 − Zi2 = 1,
and ∆ is the maximum impact of the unobserved bias on the odds of a positive response
difference, Yi > 0. A bias of Γ is equivalent to the curve defined by Γ = (Λ∆+ 1) / (Λ +∆).
More precisely, under a certain semiparametric model for Yi and Zi1 − Zi2, a sensitivity
analysis at Γ gives exactly the same P -value bounds as all sensitivity analyses at (Λ,∆)
such that Γ = (Λ∆+ 1) / (Λ +∆). In other words, one can calculate and report using
one parameter Γ but have available the equivalent interpretations involving two parameters
(Λ,∆). See Rosenbaum and Silber (2009b) for a precise discussion.

The function amplify in the sensitivitymv package performs the required elementary
calculations. Specifically, the call amplify(gamma, lambda) takes a scalar Γ > 1 and a
vector of Λ’s and computes the corresponding vector of ∆’s. The analyses in §2.2 and §2.3
were insensitive to Γ = 3. The following call considers Λ = (4, 5, 6, 7).

> library(sensitivitymv)
> amplify(3, c(4 : 7))

The result is:

6
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Sensitivity Analysis

4 5 6 7
11.00 7.00 5.67 5.00

For example, an unobserved covariate that increases the odds of treatment, Zi1 − Zi2 = 1,
by at most Λ = 5 and the odds of a positive response difference, Yi > 0, by at most
∆ = 7 is equivalent to Γ = 3. However, Γ = 3 is also equivalent to (Λ,∆) = (7, 5), to
(Λ,∆) = (4, 11), to (Λ,∆) = (11, 4), and to (Λ,∆) = (6, 5.67). That is, a bias of Γ = 3 is
quite a large bias, the omission of a covariate strongly related to both treatment assignment
and response.

Similarly, amplify(1.5,2) yields 4, so Γ = 1.5 corresponds with both (Λ,∆) = (2, 4)
and (Λ,∆) = (4, 2), while amplify(1.25,2) yields 2, so Γ = 1.25 corresponds (Λ,∆) =
(2, 2). In words, Γ = 1.25 corresponds with a doubling of the odds of treatment and
a doubling of the odds of a positive response difference, not a trivially small bias. In
Γ = (Λ∆+ 1) / (Λ +∆), as ∆ → ∞, the corresponding Λ approaches Γ.

3. Matched sets with multiple controls

3.1 M-statistics with multiple controls

With ni ≥ 2 subjects in set i, there are ni − 1 treated-minus-control pair differences, Yik,
k = 1, . . . , ni−1, all with the same treated subject, Zij = 1, but each with a different control,

Ziℓ = 0. The scale factor, s, is now defined to be the median of the
∑I

i=1

(
ni
2

)
absolute

differences,
∣∣Rij −Rij′

∣∣ with j < j′. The M -statistic is then T =
∑I

i=1wi
∑ni−1

k=1 ψ (Yik/s),

summing over all
∑I

i=1 (ni − 1) pair differences Yik, where set i is given weight wi. See
Rosenbaum (2007, 2014) for technical discussion of sensitivity analyses using these statistics.

There are various ways to attach weights wi to matched sets, and senmv and senmw

provide several options. Before discussing weights, consider an example with constant
weights, essentially an unweighted example, in which every treated subject is matched to
ni − 1 = 2 controls.

3.2 Example with two controls

Fish often contains mercury. Does eating large quantities of fish increase levels of mercury in
the blood? Data set mercury in the sensitivitymw package is from the 2009-2010 National
Health and Nutrition Examination Survey (NHANES) and is the example in Rosenbaum
(2014). There are 397 rows or matched triples and three columns, one treated with two
controls. The values are methylmercury levels in blood in µg/dL. Column 1, “Treated”,
describes an individual who had at least 15 servings of fish or shellfish in the previous
month. Column 2, “Zero”, describes an individual who had 0 servings of fish or shellfish
in the previous month. Column 2, “One”, describes an individual who had 1 serving of
fish or shellfish in the previous month. In the comparison here, Zero and One are not
distinguished; both are controls. Sets were matched for gender, age, education, household
income, black race, Hispanic, and cigarette consumption; see Table 1 in Rosenbaum (2014).
A description of the data follows.
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amplify 3

In a straightforward way, the senmv package may be used in calculations for approximate evidence
factors in the sense of Rosenbaum (2011); see documentation for the truncatedP or truncatedPbv
functions.

There are six data sets, erpcp, tbmetaphase, mercury, mtm, lead150 and lead250 . As noted in the
documentation for senmv and truncatedP, these three data sets may be used to reproduce analyses
from the cited literature, as illustrated in the examples for senmv and truncatedP. The documentation
for mscorev shows how to reproduce an intermediate result, specifically Table 3 in Rosenbaum
(2007).

Author(s)

Paul Rosenbaum

Maintainer: Paul R. Rosenbaum <rosenbaum@wharton.upenn.edu>

References

Huber, P. (1981) Robust Statistics. New York: Wiley, 1981.

Maritz, J. S. (1979) Exact robust confidence intervals for location. Biometrika 1979, 66, 163-166.

Rosenbaum, P. R. (2002) Observational Studies (2nd edition). New York: Springer.

Rosenbaum, P. R. (2007) Sensitivity analysis for m-estimates, tests and confidence intervals in
matched observational studies. Biometrics, 2007, 63, 456-464.

Rosenbaum, P. R. and Silber, J. H. (2009) Amplification of sensitivity analysis in observational
studies. Journal of the American Statistical Association, 104, 1398-1405.

Rosenbaum, P. R. (2011) Some approximate evidence factors in observational studies. Journal of
the American Statistical Association, 106, 285-295.

Rosenbaum, P. R. (2013) Impact of multiple matched controls on design sensitivity in observational
studies. Biometrics, 2013, 69, 118-127.

Zaykin, D. V., Zhivotovsky, L. A., Westfall, P. H. and Weir, B. S. (2002) Truncated product method
of combining P-values. Genetic Epidemiology, 22, 170-185.

amplify Amplification of sensitivity analysis in observational studies.

Description

Uses the method in Rosenbaum and Silber (2009) to interpret a value of the sensitivity parameter
gamma, for instance the parameter in the senmv function. Each value of gamma amplifies to a
curve (lambda,delta) in a two-dimensional sensitivity analysis, the inference being the same for
all points on the curve. That is, a one-dimensional sensitivity analysis in terms of gamma has a
two-dimensional interpretation.

Usage

amplify(gamma, lambda)
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4 amplify

Arguments

gamma gamma > 1 is the value of the sensitivity parameter, for instance the parameter
in senmv. length(gamma)>1 will generate an error.

lambda lambda is a vector of values > gamma. An error will result unless lambda[i] >
gamma > 1 for every i.

Details

A single value of gamma, say gamma = 3.5 in the example, corresponds to a curve of values of
(lambda, delta), including (4, 26), (6,8), (8,6), and (11,5) in the example. An unobserved covariate
that is associated with a lambda = 6 fold increase in the odds of treatment and a delta = 8 fold
increase in the odds of a positive pair difference is equivalent to gamma = 3.5.

The curve is gamma = (lambda*delta + 1)/(lambda+delta). Amplify is given one gamma and a
vector of lambdas and solves for the vector of deltas. The calculation is elementary.

This interpretation of gamma is developed in detail in Rosenbaum and Silber (2009), and it makes
use of Wolfe’s (1974) family of semiparametric deformations of an arbitrary symmetric distribuiton.

Strictly speaking, the amplification describes matched pairs, not matched sets. The senmv function
views a k-to-1 matched set with k controls matched to one treated individual as a collection of
k correlated treated-minus-control matched pair differences; see Rosenbaum (2007). For matched
sets, it is natural to think of the amplification as describing any one of the k matched pair differences
in a k-to-1 matched set.

The curve has asymptotes that the function amplify does not compute: gamma corresponds with
(lambda,delta) = (gamma, Inf) and (Inf, gamma).

A related though distict idea is developed in Gastwirth et al (1998). The two approaches agree when
the outcome is binary, that is, for McNemar’s test.

Value

Returns a vector of values of delta of length(lambda) with names lambda.

Note

The example expands the discussion of Table 1 in Rosenbaum (2007). The study is insensitive to
a bias of gamma = 3.5. An unobserved covariate associated with a lambda = 6 fold increase in the
odds of treatment and a delta= 8 fold increase in the odds of positive pair difference is equivalent to
gamma = 3.5. Also, gamma = 3.5 is equivalent to (lambda,delta) = (4,26), (8,6) and (11,5).

Author(s)

Paul R. Rosenbaum

References

Gastwirth, J. L., Krieger, A. M., Rosenbaum, P. R. (1998) Dual and simultaneous sensitivity analysis
for matched pairs. Biometrika, 85, 907-920.

Rosenbaum, P. R. (2007) Sensitivity analysis for m-estimates, tests and confidence intervals in
matched observational studies. Biometrics, 2007, 63, 456-464.
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erpcp 5

Rosenbaum, P. R. and Silber, J. H. (2009) Amplification of sensitivity analysis in observational
studies. Journal of the American Statistical Association, 104, 1398-1405.

Wolfe, D. A. (1974) A charaterization of population weighted symmetry and related results. Journal
of the American Statistical Association, 69, 819-822.

Examples

data(erpcp)
senmv(erpcp,gamma=3.5,trim=1)
amplify(3.5,6)
amplify(3.5,c(4,6,8,11))

erpcp DNA Damage Among Welders

Description

Matched pairs of a welder and a control, matching for age and smoking. The values are DNA
elution rates through polycarbonate filters with proteinase K (or erpcp). Data are originally from
Werfel et al. (1998) and were used as an example in Rosenbaum (2007). Data are used to illustrate
the senmv function in the sensitivitymv package.

Usage

data(erpcp)

Format

A data frame with 39 observations on the following 2 variables.

welder erpcp value for the welder

control erpcp value for the matched control

Source

Werfel et al. (1998).

References

Rosenbaum, P. R. Sensitivity analysis for m-estimates, tests and confidence intervals in matched
observational studies. Biometrics, 2007, 63, 456-464.

Werful, U., Langen, V., Eickhoff, I. et al. Elevated DNA strand breakage frequencies in lymphocytes
of welders exposed to chromium and nickel. Carcinogenesis, 1998, 19, 413-418.

Examples

data(erpcp)
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$Confidence.Interval
minimum maximum 
 0.3561  0.7916 

>  senmwCI(erpcp, gamma = 2, method = "t", one.sided = TRUE)
$PointEstimate
minimum maximum 
 0.4167  0.7487 
$Confidence.Interval
minimum maximum 
 0.2081     Inf 

>  senmwCI(erpcp, gamma = 2, method = "t", one.sided = FALSE)
$PointEstimate
minimum maximum 
 0.4167  0.7487 
$Confidence.Interval
minimum maximum 
 0.1552  1.0414 

### now try the "amplify stuff" (2009 JASA paper)
> install.packages("sensitivitymv")
##### page 6  sec 2.4
### Gamma = f(Lamda [bias in assignment], Delta [bias in outcome])
### amplify takes arguments Gamma, Lamda(values >Gamma)  produces Delta
> amplify(3,c(4:7))
        4         5         6         7 
11.000000  7.000000  5.666667  5.000000 
## discussion p.7

> ## mercury in RQ
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8 iv_sens

# Save data objects
Y <- lalonde$re78 # the outcome of interest
Tr <- lalonde$treat # the treatment of interest

# Match - without replacement
mDW <- Match(Y=Y, Tr=Tr, X=DWglm$fitted, replace=FALSE)

# One should check balance, but let's skip that step for now.

# Sensitivity Test:
hlsens(mDW, pr=.1, Gamma=1.5, GammaInc=.25)

iv_sens Function to calculate Rosenbaum bounds for IV Estimator based on
Wilcoxon sign rank test.

Description

iv_sens performs a non-parametric, instrumental variable sensitivity analysis on matched pairs
following the logic of the Neyman-Rubin framework for causal inference. The function supports a
variable-valued instrument.

Usage

iv_sens(Rt, Rc, Dt, Dc, Gamma = 6, GammaInc = 1)

Arguments

Rt,Rc Vectors of observed response outcomes for matched treatment and control ob-
servations, respectively.

Dt,Dc Vectors of observed doses for matched observations, respectively. This is level
of dose encouraged by the instrument.

Gamma Upper-bound on gamma parameter.

GammaInc To set user specified increments for gamma parameter.

Details

Given matched pairs of observations on an instrument Z, which encourages dose D, this function
performs a Rosenbaum’s bounds sensitivity analysis. Note that matching is done on levels of the
instrument. See example below.

Value

Returns an object of class rbounds.

package rbounds

rag
Rectangle

rag
Rectangle

rag
Highlight



Rosenbaum

In a randomized experiment, the permutational t-test is the randomization test that
uses as its test statistic either the total, T =

∑I
i=1 Yi, or the mean, (1/I)

∑I
i=1 Yi, where

these two statistics give the same permutational P -value. The permutation distribution
of the mean, or the permutational t-test, is of historical and conceptual importance, in
part because, in a randomized experiment, the expectation of (1/I)

∑I
i=1 Yi is the average

treatment effect, {1/ (2I)}
∑I

i=1

∑2
j=1 (rTij − rCij).

2.2 Using the permutational t-test in matched pairs

Werfel et al. (1998) matched 39 welders exposed to chromium and nickel to 39 unexposed
controls, measuring DNA damage in lymphocytes by DNA elution rates through polycar-
bonate filters with proteinase K (or ERPC+). Pairs were matched for age and smoking
habits. The data frame erpcp in both packages has two columns, welder and control, and
it contains the ERPC+ values for 39 pairs or rows.

The following calculations obtain the upper bound on the one-sided P -value testing the
null hypothesis of no treatment effect using the permutational t-test (method=“t”). For
Γ = 1, this is the usual randomization P -value for the mean difference, namely 2.048×10−5.
For Γ = 3, the upper bound is 0.0228. For Γ = 4, the upper bound is 0.0579, so P -values
well below and slightly above the conventional 0.05 level are possible under H0 if the bias
could be as large as Γ = 4. In other words, rejection of H0 is sensitive to unmeasured
biases of magnitude Γ = 4.

> library(sensitivitymw)
> data(erpcp)
> senmw(erpcp, gamma = 1, method = “t”)$pval
[1] 2.048115e− 05

> senmw(erpcp, gamma = 3, method = “t”)$pval
[1] 0.02275942
> senmw(erpcp, gamma = 4, method = “t”)$pval
[1] 0.0579339

Association does not imply causation, and that is always true, but logical implication
tells us less than sensitivity analysis of the data at hand. The sensitivity analysis says
that the observed association between welding and DNA elution rates is too strong to be
explained by a bias of Γ = 3, because the maximum possible P -value from a bias of Γ = 3 is
0.0228, so a bias of that magnitude would not make the null hypothesis of no effect plausible.
However, a bias of Γ = 4 would make the null hypothesis barely plausible, because with a
bias that large, the P -value could be as large as 0.0579 > 0.05. Saying that association does
not imply causation is essentially the same as saying that the upper bound on the P -value
tends to 1 as Γ → ∞.

The P -value bounds are one-sided. In a sensitivity analysis, it is safe though somewhat
conservative to obtain a two-sided P -value by doubling the smaller of two one-sided P -
values, reporting a two-sided bound of 0.02275942× 2 = 0.04551884 for Γ = 3. The reason
doubling the one-sided P -value is conservative in a sensitivity analysis is that the bias that
pushes the test statistic T into the upper tail is different from the bias that pushes it into
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mcontrol 9

Author(s)

Luke Keele, Penn State University, <ljk20@psu.edu>

Jason W. Morgan, Ohio State University, <morgan.746@osu.edu>

References

Angrist, Joshua D., Imbens, Guido W., and Rubin, Donald B. (1996). "Identification of Causal
Effects Using Instrumental Variables." Journal of the American Statistical Association 91/434, pp.
444–455.

Rosenbaum, Paul R. (1996). "Comment." Journal of the American Statistical Association 91/434,
pp. 465–468.

Rosenbaum, Paul R. (2002). Observational Studies. Springer-Verlag.

Rosenbaum, Paul R. (2010). Design of Observational Studies. Springer-Verlag.

See Also

See also data.prep, binarysens, hlsens, Match, mcontrol

Examples

## Example from Rosenbaum (2010, ch. 5).

data(AngristLavy)

#Match on Economic Status Across Levels of the Instrument
rr <- Match(Y=AngristLavy$avgmath, Tr=AngristLavy$z, X=AngristLavy$pct_disadv,
estimand ="ATC", M=2, replace=FALSE)

#Extract Matched Outome Data
ctrl <- AngristLavy$avgmath[rr$index.control]
trt <- AngristLavy$avgmath[rr$index.treated]

#Extract Matched Doses
#Doses Encouraged By Instrument - Here Class Size
csize.trt <- AngristLavy$classize[rr$index.treated]
csize.ctrl <- AngristLavy$classize[rr$index.control]

#Run Sensitivity Analsyis
iv_sens(trt, ctrl, csize.trt, csize.ctrl, Gamma=2, GammaInc=.1)

mcontrol Sensitivity Analysis For Multiple Matched Controls

Description

Function to calculate Rosenbaum bounds for continuous or ordinal outcomes based on Wilcoxon
sign rank test p-value when there are multiple matched control units.
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Version 1.2
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4 ARsensitivity.ci

See Also

ivreg

Examples

### This is the IV model in panel A, column (5) of Table 3 from Card, 1995, "Using
### Geographic Variation in College Proximity to Esimate the Return from Schooling"
data(card.data)
ivmodel=ivreg(lwage ~ educ + exper + expersq + black + south + smsa + reg661 + reg662 +
reg663 + reg664 + reg665+ reg666 + reg667 + reg668 + smsa66, ~ nearc4 + exper +
expersq + black + south + smsa + reg661+ reg662 + reg663 + reg664 + reg665 + reg666 +
reg667 + reg668 + smsa66, x=TRUE, data=card.data)
anderson.rubin.ci(ivmodel)

ARsensitivity.ci ARsensitivity.ci

Description

Calculates the confidence interval for the effect of a treatment (endogenous) variable using an instru-
mental variable, which is based on an extension of Anderson-Rubin test and allows IV be possibly
invalid within a certain range.

Usage

ARsensitivity.ci(ivmodel, Delta=NULL, conflevel=.95)

Arguments

ivmodel Instrumental variable (IV) model fit using ivreg. Make sure to use the option
x=TRUE when fitting the ivreg model.

Delta The allowance of sensitivity parameter for possibly invalid IV. If Delta=NULL,
the ARsensitivity.ci function will calculate the confidence interval for a standard
Anderson-Rubin test with valid IV.

conflevel Confidence level for confidence interval.

Value
confidence.interval

Confidence interval for effect of treatment. If it’s a 2*2 matrix, the confidence
interval is consisted of two disjoint intervals, each row of the matrix is one in-
terval.

printinfo Report the confidence interval in one printing sentence.

ci.type If ci.type=1, the confidence interval is finite. If ci.type=2, the confidence interval
is infinite. If ci.type=3, the confidence interval is an empty set.

rag
Highlight



Package ‘ivmodel’
July 30, 2015

Type Package

Title Statistical Inference and Sensitivity Analysis for Instrumental
Variables Model

Version 1.1

Date 2015-07-29

Author Yang Jiang, Hyunseung Kang, and Dylan Small

Maintainer Hyunseung Kang <hskang@stanford.edu>

Description Contains functions for carrying out instrumental variable estimation of causal effects, in-
cluding power analysis, sensitivity analysis, and diagnostics.

Depends Matrix

License GPL-2

LazyData true

NeedsCompilation no

Repository CRAN

Date/Publication 2015-07-30 07:07:08

R topics documented:
ivmodel-package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
AR.power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
AR.size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
AR.test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
ARsens.power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
ARsens.size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
ARsens.test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
card.data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
CLR.test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
coef.ivmodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
confint.ivmodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
FullerEst . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
ivmodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
kClassEst . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1

rag
Highlight

rag
Highlight

rag
Highlight

rag
Highlight

rag
Highlight

rag
Highlight




