Advanced Statistical Methods
for Observational Studies
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Today Is the last lecture.
Presentations tomorrow.
Problem Set #2 was posted

from today (Monday, June 12) by 5pm.
Get to Professor Baiocchi, MSOB x318

|l f | m not there then you can



real world randomness

_____________________________________________________________________________________ @

(MAYBE)

Baiocchi, Cheng and Small (2014)- “Instrumental variable methods for causal inference”



http://onlinelibrary.wiley.com/doi/10.1002/sim.6128/epdf
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INnstrumental variable: excess travel time

infarction reduce mortality?

“JAMA. 272(11): 85966, September 1994




revised design
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NEAR -FAR MATCHING

Baiocchi, Small, Lorch and Rosenbaum i2010i— Buildini a Stronier Instrument in an Observational Studi


http://www.tandfonline.com/doi/abs/10.1198/jasa.2010.ap09490
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Sorting Is potentially biased!
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Bhattacharya and Vogt (2007) — Do Instrumental Variables Belong in Propensity Scores?

Sorting Is potentially biased!



http://www.nber.org/papers/t0343
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Sorting largely due to the randomness!




Baiocchi, Small, Lorch and Rosenbaum (2010)— Building a Stronger Instrument in an Observational Study

S



http://www.tandfonline.com/doi/abs/10.1198/jasa.2010.ap09490

Instrumental variables

_____________________________________________________________________________________ @

NEAR -FAR MATCHING

Baiocchi, Small, Lorch and Rosenbaum i2010i— Buildini a Stronier Instrument in an Observational Studi


http://www.tandfonline.com/doi/abs/10.1198/jasa.2010.ap09490
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Use t he 1 dea of “bl ock desi
control observed variation.

Use the idea of instrumental variables/encouragement
to control unobserved variation.




Summari ze discrepancies 1In

We usedMahalanobis distance
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Selection largely due to the instrument!




design-based|Vs: 2"d step

O




Q1 Q, Q3 E E Q; (ﬁl @2 W3 E E
a2 € &y ¥ o 2 © &
— A (&1 E A e x _ A,(%} E A e ~
T~ & & E  éw =& 8 E  éw
: E & & E &
©6Q, E E E E Q.0 6, E E E E O

Diff Covariates + Diff Encouragement = Discrepancy Matrix



Q1 Q2 Q3 E E Q W 9 @3 B Eo
(‘7’921 ’QZZ R é &y h,(%l 092 n E Y
_ A E é % — AO@:EI. E R e, ~
&y é E  é# =& 8 E € &
: E 6 & E &
6Q, E E E E Q0 69, E E E E w0

Diff Covariates + Diff Encouragement = Discrepancy Matrix
(near) (faur (barrier to being paired)



Q; Qp

(‘T%l QZ
_ A~
Te™ & &
5

Q3

.|'|'|>

[T

[Th

£
£

gp D> D% D% Dx ;l',g

AN Qz

Q

o
|

22

Qo

!
b D D

W2

M

(93

Th

.|'|'|>
’ (M D D% D o
O] 3! Qz

|T|)z.|-|-|>
!

-

Q

Mh



design-based|Vs: 3@ step

O




Something has got to give:

As we force separation in the instrument, it will be more
difficult to find preemies with similar covariates.



Something has got to give:

As we force separation in the instrument, it will be more
difficult to find preemies with similar covariates.

Allow some subjects to be removed from the study design
by matching to sinks.



Let k=number of sinks. Then augment the matrix like
SO:

T
* Hb

T = £ X € discepancymatrix, after first two steps
= ¢ x ‘Qmatrix,with all entries 0
H= 'Qx Qmatrix,with entries Ho



Mortality Outcome 2.269 1.259 13.33% 0.04
Difference in Travel Time Instrument 4.57 19.00 17.18] -0.84
% attending high level NICU Treatment 100.0% 0.09 49.79 2.0]
Birth weight Preemie covariates 2,454.07 2,693.24 739.27 -0.34
Gestational age 34.61] 35.69 2.80 -0.3
Gl 0.99 0.69 8.79 0.04
GU 0.99 0.89 9.09 0.01]
CNS 0.99 0.49 8.39 0.0
Pulmonary % of preemies with type 0.89 0.79 8.89 0.0]
Cardio congenital disorders 1.49 0.79 10.59 0.04
Skeletal 0.79 0.99 9.09 -0.04
Skin 0.09 0.09 0.09 0.0(
Chromosomes 0.49 0.39 6.39 0.0
Other_Anomaly 0.89 0.19 7.09 0.04
Gestational DiabetesM 4,99 4.39 21.09 0.03
Mother's education 3.76 3.58 1.19 0.14
Insurance - Fee for service 24.0% 24.59 42.89 -0.01
Insurance - HMO 32.39 27.89 46.09 0.1(
Insurance - Government 23.5% 24.29 42.69 -0.03
Insurance - Other Mother covariates 16.8% 21.4% 39.19 -0.17
Uninsured 2.29 1.69 13.79 0.04
Prenatal care 2.51 2.37 1.30 0.11
Single birth (y/n) 79.0% 86.19 38.39 -0.19
Parity 2.08 2.09 1.31 -0.01
Mother's age 28.41 27.71] 6.25 0.11
Median income 41,484.2% 40,258.92 14,587.24 0.04
Median home value 97,663.00 95,083.1% 48,762.438 0.0
% completed high school Census level covariat 79.99 80.09 9.79 -0.01
% completed college 22.29 19.49 13.19 0.2]
% renting 31.49 27.99 12.89 0.2§
% below poverty line 13.49 11.89 9.99 0.14




Variable Type High NICU Low NICU sd I'/sd

Mortality | Outcome | 226%  125% 1333% 0.0

% attending high level NIC 1000%  00%  49.7% 20




1st 2nd 3rd 4th
Quartile Quartile Quartile Quartile

Mortality |  193%  208%  147%  174% 0.8

max (! /

% attending high level NIC




Matched Pairs
49,587

Variable Type

Encouraged Unencouraged

Mean

Mean e

I / sd

Mortality | Outcome |  154%  194% 12.86% 0.0

%attending highlevel NICY ___ Treatment |  68.6%  254%  497%  0.8]
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Historically: two -stage least squares
State of the art: residual inclusion models
Trusty: permutation -based inference
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Historically: two -stage least squares

Model two parts of the process:
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The outcome model.
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Generally speaking, 2sl s 1Is
met hod... which have probl em

Historically, the big problems came up when the
outcomes (y) was not linear.

Take-away: If the outcome is linear AND the treatment Is
EITHER linear or binary then two -stage least squares is
the path of least resistance.
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State of the art: residual inclusion models

Model two parts of the process:
Selection into the treatment.
The outcome model.
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Residual inclusion models were developed to deal with
nonlinear outcomes.

They perform quite well in many of the GLM setting —
e.g., logistic.
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Residual inclusion models were developed to deal with
nonlinear outcomes.

They perform quite well in many of the GLM setting —
e.g., logistic.

In the linear outcome/linear treatment case 2sls and
RIMs are the same.

Take-away: Probably best to opt for RIMSs.
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iInference: permutation -based

9,



http://stat.wharton.upenn.edu/~rosenbap/RobustIV.pdf

Trusty: permutation based
Use the Z as the randomizer.

Technical reference:

Imbens and Rosenbaum (2005) “Robust, accurate confidence intervals with a weak
instrument: Quarter of birth and education. ”

Applied reference:

Greevy, Silber, Cnaan, and Rosenbaum(2004) “Randomization inference with imperfect

compliance in the ACE-inhibitor after anthracycline randomized trial . "



http://stat.wharton.upenn.edu/~rosenbap/RobustIV.pdf
http://www-stat.wharton.upenn.edu/~rosenbap/AAA.pdf

regression discontinuity
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|l ntuil tir on: What 1 f there’s
mechanism and someone is just smidge on one side and
someone I s a smidge on the
up there? Could they Dbe the
up on the other side?

GWYNETH PALTR@SW'\
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Research question: How much benefit does the student
receive from being given support for college?
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Example: The National Merit Scholarship.

Research question: How much benefit does the student
receive from being given support for college?

The nalve comparison is horrid: Those who work to get
t he NMS are outstanding and
mixed bag.

But there are millions of students who take the PSAT
every year, maybe we can find a subgroup.
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Features of an RD

RD designs can be invalid if individuals can precisely manipulate the
“assi gnmendt variabl e

RD design I s anal ogous to a “1| oc:
The “randomness” comes from
above and below the cut off
that morning)

Could be thought of aswp — - .

(observed score )- (cut off) = (randomness)

The localnessis really important. Think: the exact cutoff
point I s a bit arbitrary, b
that Is really important and meaningful for the context.
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Inference: RDs are usually analyzed assuming random
assignment above and below the cutoff point.
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Inference: RDs are usually analyzed assuming random
assignment above and below the cutoff point.

While the argument is that being above or below the
cutoff Is more or less random, you can enhance your
argument by verifying in the covariates.

Consider matching individuals on covariates.

Then you can perform a permutation based test (e.g., Wilcoxon
signed rank test).

Perform a sensitivity analysis.
Looks much like what we learned in pscore.

Many economists will use some kind of SEM:
wp — 1 2Q -5
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Connection to IVs: in the fuzzy regression discontinuity
design you can see the connection to an encouragement
design and to IVs.
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Discuss the randomness
Comes from lack of precise control around the cutoff point.

Is the randomness really unconnected with the variables you are
concerned may be causing confounding?

Consider how far from the cutoff point to use.

Do a Table 1 of above and below cutoff.
Consider matching on covariates to improve balance.

Bottom line: RD is not radically different from IVs. Only
really different in terms of the presentation of the
randomness.

Inference can be done like thepscore set up (sharp RD)
or like an IV (fuzzy RD).






